2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 75Citation - Scopus: 80Unique Ligand-Based Oxidative Dna Cleavage by Zinc(ii) Complexes of Hpyramol and Hpyrimol(Wiley-v C H verlag Gmbh, 2007) Maheswari, Palanisamy Uma; Barends, Sharief; Oezalp-Yaman, Seniz; de Hoog, Paul; Casellas, Helene; Teat, Simon J.; Reedijk, JanThe zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn-II. All the five complexes cleave the phi X174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. ne enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.Article Citation - WoS: 2Citation - Scopus: 2Antiproliferative Activity of Platinum(ii) and Copper(ii) Complexes Containing Novel Biquinoxaline Ligands(Oxford Univ Press, 2024) El-Beshti, Hager Sadek; Gercek, Zuhal; Kayi, Hakan; Yildizhan, Yasemin; Cetin, Yuksel; Adiguzel, Zelal; Ozalp-Yaman, SenizNowadays, cancer represents one of the major causes of death in humans worldwide, which renders the quest for new and improved antineoplastic agents to become an urgent issue in the field of biomedicine and human health. The present research focuses on the synthesis of 2,3,2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-tetra(pyridin-2-yl)-6,6MODIFIER LETTER PRIME-biquinoxaline) and (2,3,2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-tetra(thiophen-2-yl)-6,6MODIFIER LETTER PRIME-biquinoxaline) containing copper(II) and platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin were assessed with UV titration, thermal decomposition, viscometric, and fluorometric methods. The thermodynamical parameters and the temperature-dependent binding constant (KMODIFIER LETTER PRIMEb) values point out to spontaneous interactions between the complexes and CT-DNA via the van der Waals interactions and/or hydrogen bonding, except Cu(ttbq)Cl2 for which electrostatic interaction was proposed. The antitumor activity of the complexes against several human glioblastomata, lung, breast, cervix, and prostate cell lines were investigated by examining cell viability, oxidative stress, apoptosis-terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, in vitro migration and invasion, in vitro-comet DNA damage, and plasmid DNA interaction assays. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that Cu(ttbq)Cl2, Pt(ttbq)Cl2, and Pt(tpbq)Cl2 have the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. The wound healing and invasion analysis results also supported the higher anticancer activity of these two compounds. Graphical Abstract Antitumor activity of biqunoxaline complexes.

