Antiproliferative Activity of Platinum(ii) and Copper(ii) Complexes Containing Novel Biquinoxaline Ligands
Loading...
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford Univ Press
Open Access Color
HYBRID
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Nowadays, cancer represents one of the major causes of death in humans worldwide, which renders the quest for new and improved antineoplastic agents to become an urgent issue in the field of biomedicine and human health. The present research focuses on the synthesis of 2,3,2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-tetra(pyridin-2-yl)-6,6MODIFIER LETTER PRIME-biquinoxaline) and (2,3,2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-tetra(thiophen-2-yl)-6,6MODIFIER LETTER PRIME-biquinoxaline) containing copper(II) and platinum(II) compounds as prodrug candidates. The binding interaction of these compounds with calf thymus DNA (CT-DNA) and human serum albumin were assessed with UV titration, thermal decomposition, viscometric, and fluorometric methods. The thermodynamical parameters and the temperature-dependent binding constant (KMODIFIER LETTER PRIMEb) values point out to spontaneous interactions between the complexes and CT-DNA via the van der Waals interactions and/or hydrogen bonding, except Cu(ttbq)Cl2 for which electrostatic interaction was proposed. The antitumor activity of the complexes against several human glioblastomata, lung, breast, cervix, and prostate cell lines were investigated by examining cell viability, oxidative stress, apoptosis-terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, in vitro migration and invasion, in vitro-comet DNA damage, and plasmid DNA interaction assays. The U87 and HeLa cells were investigated as the cancer cells most sensitive to our complexes. The exerted cytotoxic effect of complexes was attributed to the formation of the reactive oxygen species in vitro. It is clearly demonstrated that Cu(ttbq)Cl2, Pt(ttbq)Cl2, and Pt(tpbq)Cl2 have the highest DNA degradation potential and anticancer effect among the tested complexes by leading apoptosis. The wound healing and invasion analysis results also supported the higher anticancer activity of these two compounds. Graphical Abstract Antitumor activity of biqunoxaline complexes.
Description
Kayi, Hakan/0000-0001-7300-0325; Cetin, Yuksel/0000-0001-5101-3870; Ozalp Yaman, Seniz/0000-0002-4166-0529; Elbeshti, Hager/0000-0002-3027-0859
Keywords
Cu(II) and Pt(II) biquinoxalines, DNA/HSA binding, DNA cleavage, Apoptosis, Invasion/migration assay, ROS generation, Paper, Coordination Complexes, Humans, Antineoplastic Agents, Apoptosis, DNA, Ligands, Copper, HeLa Cells, Platinum, 01 natural sciences, 0104 chemical sciences
Turkish CoHE Thesis Center URL
Fields of Science
01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q3
Scopus Q
Q2

OpenCitations Citation Count
1
Source
Metallomics
Volume
16
Issue
2
Start Page
End Page
PlumX Metrics
Citations
Scopus : 2
PubMed : 1
Captures
Mendeley Readers : 7
SCOPUS™ Citations
2
checked on Jan 22, 2026
Web of Science™ Citations
2
checked on Jan 22, 2026
Page Views
11
checked on Jan 22, 2026
Downloads
76
checked on Jan 22, 2026
Google Scholar™

OpenAlex FWCI
1.07549348
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


