4 results
Search Results
Now showing 1 - 4 of 4
Conference Object Citation - WoS: 2Citation - Scopus: 3Design Considerations for Sub-Ghz Multilayer Microstrip Antenna for Near Ground Communication Links in Rural Areas(Ieee, 2017) Bilgin, Gulsima; Yilmaz, Vadi Su; Aydin, Elif; Kara, Ali; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringThis paper presents some preliminary results of design and development of sub-GHz multilayer microstip antenna for use in near ground communication applications. In design stage of the antenna, iterative approach was applied. Firstly, a two layer microstrip antenna design process is presented. Next, the corners of the patch were cut, and a vertical wall on all sides of the antenna were introduced. In this way, both the size and resonant freqeuncy can be tuned. Moreover, as an application specific requirement, it is intended to embed this antenna into a metal box in order to protect it from man-made and natural environmental effects. This was also studied, and effects of the embedding ground on the antenna characteristics were examined. It is shown that the designed antenna provides -27dB resturn loss, and 7.3dB peak gain at 915MHz with the dimension of 150x200x13mm. Some preliminary measurements have proven the simulations.Article Citation - WoS: 6Citation - Scopus: 9Comparative Assessment of Electromagnetic Simulation Tools for Use in Microstrip Antenna Design: Experimental Demonstrations(Wiley, 2019) Bilgin, Gulsima; Yilmaz, Vadi Su; Kara, Ali; Aydin, ElifThis paper presents a better understanding of the use of finite integration techniques (FIT) and finite element method (FEM) in different types of microstrip antennas in order to determine which numerical method gives relatively more accurate results. Although the theoretical formulation based on Maxwell's equations of both FEM and FIT are approached from different aspects in the literature, there is still a lack of comparison of the same antenna type using different numerical methods employing FEM and FIT. Therefore, in this study, FEM and FIT were applied to two different types of microstrip antennas, and their simulation and experimental results was compared. For the first antenna demonstration, a multilayer structure was chosen to achieve one of the significant parameters. Then, a microstrip antenna with a compact structure was used in the second demonstration. Using these two antennas, the accuracy of FEM and FIT in different structures were compared and all simulated return loss and gain results were verified by the measured results. The experimental demonstrations show that FEM performs better for both types of microstrip antennas while FIT provides an adequate result for two-layer microstrip antennas.Conference Object Miniaturized 2.4 Ghz Antenna Design for Uav Communication Link(Ieee, 2020) Yilmaz, Vadi Su; Kara, Ali; Aydin, ElifIn many communications applications, unlike conventional antennas, lightweight, flexible, small antennas that can adapt to mechanical and industrial constraints are required. In this study, the results of antenna design operating at 2.4 GHz are presented for use in Unmanned Aerial Vehicle (UAV) tele command links. In the parametric and optimization studies carried out on the antenna, it is aimed to increase the gain while keeping the size as small as possible. The requirements of the industry, such as light, aesthetics, miniature and high gain aspects of the antenna were targeted in the design process. Finally, an antenna of 55.2x88 mm size and 7dB gain was achieved using commercial electromagnetic design tools. The designed antenna become satisfying industrial requirements with these features.Conference Object Design Considerations for Near To the Ground Communication System and Associated Sub-Ghz Low Profile Antenna(Ieee, 2017) Yilmaz, Vadi Su; Bilgin, Gulsima; Aydin, Elif; Kara, AliThis paper presents propagation aspects of a peer-to peer communication link where antennas are placed near to the ground ( low height). First, some of the propagation models are evaluated for understanding of propagation mechanisms. In this regard, as the height of the antennas are very low and the distance is large enough, reflecting angle becomes very small that makes use of two ray model. On the other hand, in the horizontal plane, the positions of the scattering objects, as a source of lateral waves, might vary largely due to the terrain undulations along with variety of objects around the link. This makes propagation mechanisms a little bit complicated. In order to design low profile, high gain sub-GHz antenna for such propagation environment, microstrip antenna with vertical ground was designed and fabricated. The antenna is required to be protected from natural and man-made effects. Therefore, the antenna with associated sensors are embedded into a metal box with a dielectric cover. All these are discussed and some of the findings are presented.

