Search Results

Now showing 1 - 5 of 5
  • Master Thesis
    Q-bernstein Polinomlarının Özellikleri Üzerine
    (2017) Almesbahı, Manal Mastafa; Turan, Mehmet; Ostrovska, Sofıya
    Bu tezin amacı Bernstein polinomları teorisini ve son genişletmesi olan q-kalkülüsü çalışmaktır. Bu çalışmanın temel odak noktası 20 yıl önce ortaya çıkan ve kısa sürede birçok araştırmacının dikkatini çeken q-Bernstein polinomlarıdır. Bu tez Bernstein polinomlarına dair bilinen bazı sonuçların derlemesinden, q-Bernstein polinomları teorisine kısa bir giriş ve bazı yeni gelişmelerden oluşmaktadır. Yeni gelişmeler kısmında; limit q-Bernstein operatör dizisinin kuvvetli operatör limiti ve q-Bernstein operatörlerinin zayıf Picard operatörler oldukları ifade edilmiştir.
  • Master Thesis
    İkinci Mertebeden Lineer Olmayan Bir Fark Denkleminin Dinamikleri Üzerine
    (2014) Aksoy, Aycan; Turan, Mehmet
    Bu tezde iki keyfi parametre içeren ikinci dereceden özel bir rasyonel fark denklemi ele alınmıştır. Bu denklem bazı dinamik yapıları incelenmiştir: pozitif çözümlerin kararlılık ve yarı döngü analizleri; periyodik çözümlerin varlığı; denge noktasının yerel ve global kararlılık analizleri yapılmıştır. Bu tez dört bölümden oluşmaktadır. İlk bölümde fark denklemleri hakkında tarihsel bilgi, bunların bazı modellemeleri, ve yakın zamanda yapılmış bazı çalışmalar verilmiştir. İkinci bölümde, diziler ve fark denklemleriyle ilgili bilinen tanımlar ve sonuçlar gösterilmiştir. Asıl sonuçlar Bölüm 3'te sunulmuştur. Son bölümde kısa bir sonuç yazılmıştır.
  • Doctoral Thesis
    Merkezi Örüntü Üreteçlerin Optimizasyonu
    (2018) Elborı, Alftah; Turan, Mehmet; Arıkan, Kutluk Bilge
    Günümüzde insanlar gibi dinamik ve sağlam hareket edebilen insan robotunu bulmak en zor görevlerden biridir. İki ayaklı hareketi araştıran birçok araştırma olmasına rağmen, günümüzde insan yetenekleri olan robot bulunmamaktadır. Bu tezde robotlarda iki ayaklı hareket için Merkezi Örüntü Üreteçlerin (CPG) optimizasyonu ile ilgili olarak, üç matematiksel yapı tartışılmıştır. Ayrıca, bu tezde iki serbestlik dereceli bir bacakta ritmik hareket elde etmek için CPG'lerin, bağlantısız, tek yönlü veya çift yönlü bağlantılı gibi farklı şekillerde eşleşmeleri incelenmiştir. CPG'lerin üç matematiksel yapısı için de kararlılık analizi yapılmıştır. Bu tezde ele alınan farklı yapılardaki farklı eşleştirmeler arasından üçüncü yapıda çift yönlü eşleştirme en iyi sonucu vermiştir. Yapılardaki parametreler kararlılık bölgesinden seçildiği zaman, herhangi bir duyusal geribildirim olmaksızın önemli sonuçların elde edildiği gözlemlenmiştir.
  • Master Thesis
    Kummer Tipi Olasılık Dağılımları için Stieltjes Sınıfları
    (2018) Khalleefah, Mohammed Ahmed Saad; Ostrovska, Sofıya; Turan, Mehmet
    Bir olasılık dağılımının momentleri yardımıyla tek olarak elde edilip edilemeyeciğini konu alan moment problemi Olasılık Teorisinin klasik problemlerinden biridir. Bu problem ilk olarak XIX. yüzyılda ele alınmış ve günümüzde de matematik ve uygulama alanlarındaki araştırmacılar tarafından yoğun bir şekilde çalışılmaktadır. Son yıllarda aynı moment dizisine sahip farklı olasılık dağılımları ailelerini bulmak popülarite kazanmış ve bu alanda çok sayıda makale yayımlanmıştır. Bu ailelerin özel sınıfı olan Stieljes sınıfı yoğun bir çalışma alanıdır. Bu tezde dönüşüm metodları konusunda arka plan bilgisinden sonra, moment problemi hakkında hem klasik hem de güncel sonuçlar sunulmuştur. İnceleme şunları içermektedir: moment probleminin genel açıklaması, moment belirlilik/belirsizlik durumları için kontrol edilebilir kriterler listesi ve olasılık yoğunlukları için bazı Stieltjes sınıfları oluşturma yöntemleri. Bütün kavramlar ve sonuçlar örneklerle gösterilmiştir. Ayrıca, son zamanlarda tanıtılan kuvvet Lindley dağılımı çalışılmış ve kuvvet Lindley yoğunluğu için yeni Stieltjes sınıfları oluşturulmuştur.
  • Master Thesis
    Hermite ve q-hermite I polinomlarının özellikleri ve aralarındaki limit ilişkileri üzerine
    (2017) Alwhaıshı, Sakına; Adıgüzel, Rezan Sevinik; Turan, Mehmet
    Bu tezde Hermite polinomları ve ayrık q-Hermite I polinomlarının bazı önemli özellikleri sunulmaktadır. Bu polinomların özellikleri aynı tarzda ele alınacaktır. Ayrık q-Hermite I polinomları, Hermite polinomlarının q-analoğudur. Bu tip polinomlar klasik ortogonal polinomlar ve q-analoğunun önemli bir sınıfıdır. Bu tezdeki temel düşünce, Hermite polinomları ve bunların ayrık versiyonlarının sahip oldukları hipergeometrik tipte diferansiyel ve q-fark denklemleri, üç terimli yineleme bağıntısı, Rodrigues formülü, ortogonal ilişkileri, üreteç fonksiyon özellikleri üzerine çalışmaktır. Hermite polinomları, q -> 1 limit durumunda ayrık q-Hermite I polinomlarından elde edilmektedir. Bu tezde sunulan her bir özellik için Hermite polinomları ve ayrık q-Hermite I polinomları arasındaki limit ilişkisi ayrıntılı olarak ele alınacaktır.