Search Results

Now showing 1 - 8 of 8
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Electrochemical Copolymerization and Characterization of Dianilines Linked by Polyether Bridge With Aniline
    (Springer, 2010) Tirkes, Seha; Onal, Ahmet M.
    Copolymer of aniline and triethylene glycol bis(o-aminophenyl) ether was synthesized by constant potential electrolysis. Cyclic voltammogram of the copolymer films recorded in the monomer-free electrolytic solution revealed that the redox behavior of the films approaches to that of poly(triethylene glycol bis(o-aminophenyl) ether) with increasing amount of triethylene glycol bis(o-aminophenyl) in the feed ratio. Copolymerization was investigated by in situ recording the changes in the electronic absorption spectrum during electrolysis. The free standing copolymer film was characterized utilizing Fourier transform infrared spectrometer, and spectroelectrochemical behavior of the copolymer was investigated via in situ UV-vis spectroscopic technique. Besides the electron spin resonance study of the copolymer film, the different morphologies of the polymers were examined by scanning electron microscopy and the copolymerization was confirmed. The temperature dependence conductivity of the copolymer film was measured by four-probe technique in the temperature range of 100-300 K, and the calculated parameters showed that conduction mechanism fits to variable range hopping.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Electrosynthesis of Polyfuran in Acetonitrile-Boron Trifluoride-Ethyl Ether Mixture and Its Device Application
    (John Wiley & Sons inc, 2007) Tirkes, Seha; Onal, Ahmet M.
    Electrochemical polymerization of furan was achieved in acetonitrile/boron trifluoride/ethyl ether (CH3 CN/BF3/EE) mixture in the presence of tetrabutylammonium tetrafluoroborate via constant potential electrolysis at 1.4 V versus Ag/AgCl. Electrochemical behavior of furan was investigated in the same solvent mixture of varying ratios, utilizing cyclic voltammetry. Free-standing polyfuran (PFu) films were obtained in CH3CN/BF3/EE mixture (2/4/4; v/v/v) and characterized using FTIR spectroscopic technique. Spectroelectrochemical behavior of the PFu film was investigated by recording the electronic absorption spectra, in sitn, in monomer-free solution. It is observed that PFu film can be reversibly cycled between -0.1 V (gray) and + 0.6 V versus Ag-wire (gray color); however, this behavior diminishes in the presence of water. Electrochromic device application of PFu film with poly(ethylene dioxythiophene) was also studied. (c) 2006 Wiley Periodicals, Inc.
  • Article
    Citation - WoS: 64
    Citation - Scopus: 74
    Production and Characterization of Poly (lactic Acid)-Based Biocomposites Filled With Basalt Fiber and Flax Fiber Hybrid
    (Sage Publications Ltd, 2020) Eselini, Najah; Tirkes, Seha; Akar, Alinda Oyku; Tayfun, Umit
    Poly (lactic acid) (PLA)-based biocomposites containing flax fiber (FF) and basalt fiber (BF) both separately and together were prepared by melt blending method at the total constant ratio of 30 wt%. Mechanical properties, thermo-mechanical characteristics, thermal stability, flow behaviors, water uptake, and morphology of composites were investigated by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermal gravimetric analysis, melt flow index (MFI) test, water absorption, and scanning electron microscopy, respectively. Mechanical test results show that tensile strength, elongation, elastic modulus, and impact strength are extended up to higher values with increase in BF content in hybrid composites. Conversely, the presence of FF displays a negative effect in which these values drop down drastically as the FF concentration increases. On the other hand, slightly higher hardness values are obtained by the addition of FF at higher loadings. DMA analysis reveals that BF inclusion leads glass transition temperature of PLA to one point higher, but hybrid and FF containing composites shift that temperature to lower values. Storage moduli of composites are enhanced with the increase in BF concentration and remarkable decreases are observed for FF-filled composites. Hybrid composites exhibit average MFI values between PLA/FF and PLA/BF composites.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Synthesis and Characterization of Novel High Temperature Structural Adhesives Based on Nadic End Capped Mda-Btda Copolyimide
    (Iop Publishing Ltd, 2018) Acar, Oktay; Varis, Serhat; Isik, Tugba; Tirkes, Seha; Demir, Mustafa M.
    A series of novel copolyimide structural adhesives were synthesized using 4,4'-diaminodiphenyl-methane (MDA), 3,4'-oxydianiline (ODA) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhy-dride (BTDA) as co-monomers, and nadic anhydride as an end cap reagent. The adhesives with different MDA and ODA contents were examined in terms of their structure, thermal stability, mechanical properties, and adhesive performance. They have glass transition temperatures (T-g) about 400 degrees C, with thermal stability up to 500 degrees C. The effect of diamine monomer compositions on adhesion performance and processability of the copolyimides were studied. The copolyimides exhibited adhesion strength up to 16.3 MPa at room temperature. Nadic end capped MDA-BTDA-ODA copolyimide resins gained adjustable and controllable processability with the addition of ether bridged aromatic segments. The copolyimide adhesive with equimolar composition of MDA: ODA is distinguished form the both commercial PMR-15 and LARC RP-46 polyimides in terms of its better processability and mechanical performance.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 19
    Physical and Mechanical Performance of Bentonite and Barite Loaded Low Density Polyethylene Composites: Influence of Surface Silanization of Minerals
    (Sage Publications Ltd, 2020) Elkawash, Hesham; Tirkes, Seha; Hacioglu, Firat; Tayfun, Umit
    In this study, two kinds of mineral fillers, bentonite (BNT) and barite (BRT), were incorporated into low density polyethylene (LDPE) by extrusion process. Silane treatment was applied to BRT and BNT surfaces in order to increase their compatibility with LDPE matrix. Surface characteristics of fillers were examined by Fourier transformed infrared spectroscopy (FTIR). LDPE-based composites were prepared at a constant concentration of 10%wt for each additives. Test samples were shaped by injection molding process. Mechanical, thermo-mechanical, water repellency, melt-flow and morphological characterizations of LDPE and its composites were performed by tensile and impact tests, dynamic mechanical analysis (DMA), water absorption test, melt flow index (MFI) measurements and scanning electron microscopy (SEM) technique, respectively. Test results showed that surface treatments led to increase for final properties of composites since they promoted to stronger adhesion between minerals and LDPE matrix compared to untreated ones. Tensile and impact strength values, storage modulus and glass transition temperature of LDPE were improved by inclusion of silane treated minerals. BRT and BNT additions caused no remarkable changes with regard to MFI of LDPE. Additionally, silane modified mineral filled composites exhibited remarkable water resistance behavior. According to SEM analysis of composites, silane treated BNT and BRT containing samples displayed homogeneous dispersions into LDPE phase whereas debondings were observed for untreated BNT and BRT filled composites due to their weak adhesion to polymer matrix.
  • Article
    Citation - WoS: 26
    Citation - Scopus: 28
    A New Electrochromic Copolymer Based on Dithienylpyrrole and Edot
    (Elsevier Science Bv, 2013) Algi, Melek Pamuk; Oztas, Zahide; Tirkes, Seha; Cihaner, Atilla; Algi, Fatih
    A new compound, namely diethyl 2,5-di(thiophen-2-yl)-1H-pyrrole-3,4-dicarboxylate (1), was copolymerized with 3,4-ethylenedioxythiophene (EDOT) via electrochemical method. The copolymer exhibits multicolor electrochromic property: It is found that the copolymer, poly(1-co-EDOT), has a specific optical band gap (1.71 eV) to reflect and/or transmit reddish brown color in the neutral state, and it can be switched to reddish orange, orange, yellowish green and blue colors upon oxidation in a low switching time (1.0 s). Importantly, these colors are essential for camouflage and/or full color electrochromic device/display applications. In addition to these, the obtained copolymer has a coloration efficiency of 173 cm(2)/C at 500 nm. (C) 2013 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 31
    Citation - Scopus: 34
    Mechanical, Thermo-Mechanical and Morphological Characterization of Abs Based Composites Loaded With Perlite Mineral
    (Iop Publishing Ltd, 2020) Alghadi, Aiah Mohamed; Tirkes, Seha; Tayfun, Umit
    Acrylonitrile-butadiene-styrene (ABS) copolymer was filled with perlite mineral (PER) at four different loading level of 2.5%, 5%, 10% and 15%. ABS/PER composites were produced using lab-scale micro-compounder followed by injection molding process. Mechanical, thermo-mechanical, melt-flow and morphological properties of composites were reported by tensile and impact tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. Mechanical characterizations revealed that tensile strength, elongation and Youngs? modulus of ABS were improved by PER inclusions. However, impact strength of ABS reduced with increase of PER concentration. Glass transition temperature of ABS displayed increasing trend for %5 concentration of PER. MFI test implied that PER addition caused slight decreasing for MFI value of unfilled ABS. Homogeneous dispersion of PER particles into ABS matrix for their lower loading level was obtained from SEM micrographs of composites. According to findings, 5% PER containing sample exhibited the best performance and it was remarked as the most suitable candidate among fabricated ABS based composites.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Comparative Performance Study of Acidic Pumice and Basic Pumice Inclusions for Acrylonitrile-Butadiene Composite Filaments
    (Mary Ann Liebert, inc, 2024) Tayfun, Umit; Tirkes, Seha; Dogan, Mehmet; Tirkes, Suha; Zahmakiran, Mehmet
    This study aims to evaluate the effective use of porous pumice powder as an additive in acrylonitrile-butadiene-styrene (ABS)-based composite materials. The influence of pumice addition on mechanical, thermomechanical, thermal, and physical properties of ABS filaments was reported. Two types of pumice, namely acidic pumice (AP) and basic pumice (BP), were melt compounded with ABS at loading levels of 5%, 10%, 15%, and 20% by weight using the melt extrusion preparation method. Composites were shaped into dog bone test specimens by the injection molding process. The physical properties of pumice powders were investigated by particle size analysis and X-ray spectroscopy techniques. Mechanical, thermomechanical, thermal, melt flow, and morphological behaviors of ABS/AP and ABS/BP composite filaments were proposed. According to test results, pumice addition led to an increase in the mechanical response of ABS up to a filling ratio of 10%. Further inclusion of pumice caused sharp reduction due to the possible agglomeration of pumice particles. Composites filled with AP yielded remarkably higher mechanical performance in terms of tensile, impact, and hardness strength compared with BP-loaded composites. According to thermal analyses, ABS exhibited higher thermal stability after incorporation of AP and BP. Pumice addition also resulted in raising the glass transition temperature of ABS. Melt flow index (MFI) findings revealed that addition of two types of pumice led to an opposite trend in the melt flow behavior of ABS filaments. Homogeneous dispersion of pumice particles into the ABS matrix when adding low amounts, as well as reduction in dispersion homogeneity with high amounts, of AP and BP was confirmed by scanning electron microscopy (SEM) micrographs.