Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources
    (Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.
    CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 13
    Optical and Structural Characteristics of Electrodeposited Cd1-xznx< Nanostructured Thin Films
    (Elsevier, 2021) Erturk, K.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.
    The structural and optical characteristics of Cd1-xZnxS (CdZnS) thin films grown by the electrodeposition method were investigated in the present paper. The crystalline structure of the grown CdZnS thin film was determined as cubic wurtzite due to observed diffraction peaks associated with (111) and (220) planes. Atomic compositional ratios of the constituent elements were obtained using energy dispersive spectroscopy and doping concentration of the Zn was found as 5% (x similar to 0.05). Scanning electron microscopy image of the studied thin film indicated that grown film is nanostructured. Raman spectra of CdS and CdZnS thin films were measured and it was seen that observed longitudinal optical modes for CdZnS present a blue-shift. Temperature-dependent band gap energy characteristics of the thin films were studied performing transmission experiments in the 10-300 K temperature range. The analyses of the recorded transmittance spectra showed that direct band gap energy of the films decreases from 2.56 eV (10 K) to 2.51 eV (300 K) with the increase of temperature. The band gap energy vs. temperature dependency was studied applying well-known Varshni optical model and various optical parameters of the films were reported according to the results of the applied model.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 24
    Temperature Dependence of Band Gaps in Sputtered Snse Thin Films
    (Pergamon-elsevier Science Ltd, 2019) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    Temperature-dependent transmission experiments were performed for tin selenide (SnSe) thin films deposited by rf magnetron sputtering method in between 10 and 300 K and in the wavelength region of 400-1000 nm. Transmission spectra exhibited sharp decrease near the absorption edge around 900 nm. The transmittance spectra were analyzed using Tauc relation and first derivative spectroscopy techniques to get band gap energy of the SnSe thin films. Both of the applied methods resulted in existence of two band gaps with energies around 1.34 and 1.56 eV. The origin of these band gaps was investigated and it was assigned to the splitting of valence band into two bands due to spin-orbit interaction. Alteration of these band gap values due to varying sample temperature of the thin films were also explored in the study. It was seen that the gap energy values increased almost linearly with decreasing temperature as expected according to theoretical knowledge.
  • Conference Object
    Citation - WoS: 4
    Citation - Scopus: 3
    Temperature-dependent material characterization of CuZnSe2 thin films
    (Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.
    In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 26
    Determination of Current Transport Characteristics in Au-cu/Cuo Schottky Diodes
    (Elsevier, 2019) Surucu, O. Bayrakli; Gullu, H. H.; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, the material properties of CuO thin films fabricated by sputtering technique and electrical properties of CuO/n-Si structure were reported. Temperature-dependent current-voltage (I-V) measurement was carried out to determine the detail electrical characteristics of this structure. The anomaly in thermionic emission (TE) model related to barrier height inhomogeneity at the interface was obtained from the forward bias I-V analysis. The current transport mechanism at the junction was determined under the assumption of TE with Gaussian distribution of barrier height. In this analysis, standard deviation and mean zero bias barrier height were evaluated as 0.176 and 1.48 eV, respectively. Depending on the change in the diode parameters with temperature, Richardson constant was recalculated as 110.20 Acm(-2)K(-2) with the help of modified Richardson plot. In addition, density of states at the interface were determined by using the forward bias I-V results.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Electrical Characterization of Cdznte/Si Diode Structure
    (Springer Heidelberg, 2020) Balbasi, C. Dogru; Terlemezoglu, M.; Gullu, H. H.; Yildiz, D. E.; Parlak, M.
    Temperature-dependent current-voltage (I - V), and frequency dependent capacitance-voltage (C - V) and conductance-voltage (G - V) measurements were performed in order to analyze characteristics of CdZnTe/Si structure. Obtained profiles enable us to understand the different characteristics of the diode structure such as the carrier conduction mechanism and the nature of the interfacial layer. Over the temperature range between 220 and 340 K, taking consideration of the disparity in the forward-biased current, the diode parameters such as saturation current (I-0), zero-bias barrier height (Phi(B0)) and ideality factor (n) have been obtained. The barrier height increased (0.53 to 0.80 eV) while the ideality factor decreased (4.63 to 2.79) with increasing temperature from 220 to 340 K, indicating an improvement in the junction characteristics at high temperatures. Due to the inhomogeneity in barrier height, the conduction mechanism was investigated by Gaussian distribution analysis. Hence, the mean zero-bias barrier height ((Phi) over bar (B0)) and zero-bias standard deviation (sigma(0)) were calculated as 1.31 eV and 0.18, respectively. Moreover, for holes in p-type Si, Richardson constant was found to be 32.09 A cm(-2) K-2 via modified Richardson plot. Using the capacitance-voltage (C - V) and conductance-voltage (G - V) characteristics, series resistance (R-s) and density of interfacial traps (D-it) have been also investigated in detail. A decreasing trend for R-s and D-it profiles with increasing frequency was observed due to the impurities at the CdZnTe/Si interface and interfacial layer between the front metal contact and CdZnTe film.
  • Article
    Citation - WoS: 45
    Citation - Scopus: 41
    Temperature-Dependent Optical Characteristics of Sputtered Nio Thin Films
    (Springer Heidelberg, 2022) Terlemezoglu, M.; Surucu, O.; Isik, M.; Gasanly, N. M.; Parlak, M.
    In this work, nickel oxide thin films were deposited by radio frequency magnetron sputtering technique. X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive X-ray analysis methods were applied to reveal the structural and morphological properties of sputtered thin films. The XRD pattern of films confirmed the presence of the cubic phase of nickel oxide with the preferential orientation of (200) direction. The surface morphology of thin films was observed as almost uniform and smooth. Optical aspects of sputtered film were studied by employing the room temperature Raman and temperature-dependent transmittance spectroscopy techniques in the range of 10-300 K. Tauc relation and derivative spectroscopy techniques were applied to obtain the band gap energy of the films. In addition, the relation between the band gap energy and the temperature was investigated in detail considering the Varshni optical model. The absolute zero band gap energy, rate of change of band gap energy, and Debye temperature were obtained as 3.57 eV, - 2.77 x 10(-4) eV/K and 393 K, respectively.