Search Results

Now showing 1 - 6 of 6
  • Article
    Citation - WoS: 15
    Citation - Scopus: 16
    Investigation of Band Gap Energy Versus Temperature for Sns 2 Thin Films Grown by Rf-Magnetron Sputtering
    (Elsevier, 2020) Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    [No Abstract Available]
  • Article
    Citation - WoS: 25
    Citation - Scopus: 25
    Temperature-Tuned Band Gap Properties of Mos2 Thin Films
    (Elsevier, 2020) Surucu, O.; Isik, M.; Gasanly, N. M.; Terlemezoglu, M.; Parlak, M.
    MoS2 is one of the fascinating members of transition metal dichalcogenides and has attracted great attention due to its various optoelectronic device applications and its characteristic as two-dimensional material. The present paper reports the structural and temperature tuned optical properties of MoS2 thin films grown by RF magnetron sputtering technique. It was observed that the atomic composition ratio of Mo:S was nearly equal to 1:2 and the deposited thin films have hexagonal crystalline structure exhibiting Raman peaks around 376 and 410 cm(-1). The band gap energies were determined as 1.66 and 1.71 eV at 300 and 10 K, respectively and temperature dependency of band gap energy was analyzed by means of Varshni and O'Donnell-Chen models. (C) 2020 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Temperature Effects on Optical Characteristics of Thermally Evaporated Cusbse2 Thin Films for Solar Cell Applications
    (Elsevier, 2022) Surucu, O.; Isik, M.; Terlemezoglu, M.; Bektas, T.; Gasanly, N. M.; Parlak, M.
    CuSbSe2 thin film was deposited by co-evaporation of binary CuSe and Sb2Se3 sources. The structural and morphological properties of the deposited thin film were investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis measurements. XRD pattern indicated that deposited thin film has an orthorhombic crystalline structure with the preferential orientation of (013) direction. SEM image presented that the thin film surface is almost uniform. The optical characteristics of the deposited CuSbSe2 thin film were investigated in detail by performing room temperature Raman, temperature-dependent transmittance spectroscopy, and photoluminescence techniques. Raman spectrum exhibited one mode at around 210 cm(-1) associated with A(g) vibrational mode. The derivative spectroscopy technique was used to obtain the band gap energy of the films. Temperature dependence of band gap energy was investigated by considering the Varshni model. The rate of change of band gap energy, absolute zero value of gap energy, and Debye temperature were determined as 1.3 x 10(-4) eV/K, 1.21 eV, and 297 +/- 51 K, respectively. The photoluminescence spectrum indicated the room temperature direct band gap energy as 1.30 eV.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 13
    Optical and Structural Characteristics of Electrodeposited Cd1-xznx< Nanostructured Thin Films
    (Elsevier, 2021) Erturk, K.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.
    The structural and optical characteristics of Cd1-xZnxS (CdZnS) thin films grown by the electrodeposition method were investigated in the present paper. The crystalline structure of the grown CdZnS thin film was determined as cubic wurtzite due to observed diffraction peaks associated with (111) and (220) planes. Atomic compositional ratios of the constituent elements were obtained using energy dispersive spectroscopy and doping concentration of the Zn was found as 5% (x similar to 0.05). Scanning electron microscopy image of the studied thin film indicated that grown film is nanostructured. Raman spectra of CdS and CdZnS thin films were measured and it was seen that observed longitudinal optical modes for CdZnS present a blue-shift. Temperature-dependent band gap energy characteristics of the thin films were studied performing transmission experiments in the 10-300 K temperature range. The analyses of the recorded transmittance spectra showed that direct band gap energy of the films decreases from 2.56 eV (10 K) to 2.51 eV (300 K) with the increase of temperature. The band gap energy vs. temperature dependency was studied applying well-known Varshni optical model and various optical parameters of the films were reported according to the results of the applied model.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources
    (Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.
    CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 26
    Determination of Current Transport Characteristics in Au-cu/Cuo Schottky Diodes
    (Elsevier, 2019) Surucu, O. Bayrakli; Gullu, H. H.; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, the material properties of CuO thin films fabricated by sputtering technique and electrical properties of CuO/n-Si structure were reported. Temperature-dependent current-voltage (I-V) measurement was carried out to determine the detail electrical characteristics of this structure. The anomaly in thermionic emission (TE) model related to barrier height inhomogeneity at the interface was obtained from the forward bias I-V analysis. The current transport mechanism at the junction was determined under the assumption of TE with Gaussian distribution of barrier height. In this analysis, standard deviation and mean zero bias barrier height were evaluated as 0.176 and 1.48 eV, respectively. Depending on the change in the diode parameters with temperature, Richardson constant was recalculated as 110.20 Acm(-2)K(-2) with the help of modified Richardson plot. In addition, density of states at the interface were determined by using the forward bias I-V results.