Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Some Permutations and Complete Permutation Polynomials Over Finite Fields
    (Tubitak Scientific & Technological Research Council Turkey, 2019) Ongan, Pınar; Temür, Burcu Gülmez
    In this paper we determine $b\\in F_{q^n}^\\ast$ for which the polynomial $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a permutationpolynomial and determine $b\\in F_{q^n}^\\ast$ for which the polynominal $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a complete permutationpolynomial where $s=\\frac{q^n-1}t,\\;t\\in\\mathbb{Z}^+$ such that $\\left.t\\;\\right|\\;q^n-1$.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On Some Permutation Trinomials in Characteristic Three
    (Hacettepe Univ, Fac Sci, 2025) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we determine the permutation properties of the polynomial x3 +xq+2 −x4q−1 over the finite field Fq2 in characteristic three. Moreover, we consider the trinomials of the form x4q−1 + x2q+1 ± x3. In particular, we first show that x3 + xq+2 − x4q−1 permutes Fq2 with q = 3m if and only if m is odd. This enables us to show that the sufficient condition in [34, Theorem 4] is also necessary. Next, we prove that x4q−1 + x2q+1 − x3 permutes Fq2 with q = 3m if and only if m ̸≡ 0 (mod 4). Consequently, we prove that the sufficient condition in [20, Theorem 3.2] is also necessary. Finally, we investigate the trinomial x4q−1 + x2q+1 + x3 and show that it is never a permutation polynomial of Fq2 in any characteristic. All the polynomials considered in this work are not quasi-multiplicative equivalent to any known class of permutation trinomials.
  • Article
    An Exhaustive Computer Search for Finding New Curves With Many Points Among Fibre Products of Two Kummer Covers Over $\\bbb{f}_5$ and $\\bbb{f}_7$
    (2013) Özbudak, Ferruh; Temür, Burcu Gülmez; Yayla, Oğuz
    In this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F5 and F7 . At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product $y^3_1$ = $\\frac {5(x+2)(x +5)} {x}$, $y^3_2$ $\\frac {3x^2(x +5)} {x + 3}$ over F7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N7 (7) of F7 -rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Özbudak and Temür (2012) for determining the number of rational points of such curves.
  • Master Thesis
    Sonlu Cisimler Üzerinde Permutasyon Polinomları
    (2017) Asad, Maha M.m. Dabboor; Temür, Burcu Gülmez
    Bu tezde sonlu cisimlerdeki permutasyon polinomları uzerine c¸alıs¸tık. Sonlu cisimler ¨ uzerinde tanımlanmıs¸ bazı permutasyon polinom tiplerinin olus¸turulması ve sınıflandı- ¨ rılması ile ilgili son zamanlarda yapılmıs¸ birtakım aras¸tırma sonuc¸larını derledik.
  • Article
    On a Class of Permutation Trinomials Over Finite Fields
    (Tubitak Scientific & Technological Research Council Turkey, 2024) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we study the permutation properties of the class of trinomials of the form f (x) = x4q+1 + λ1xq+4 + λ2x2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq and they are not simultaneously zero. We find all necessary and sufficient conditions on λ1 and λ2 such that f (x) permutes Fq2 , where q is odd and q = 22k+1, k ∈