Some Permutations and Complete Permutation Polynomials Over Finite Fields

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In this paper we determine $b\\in F_{q^n}^\\ast$ for which the polynomial $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a permutationpolynomial and determine $b\\in F_{q^n}^\\ast$ for which the polynominal $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a complete permutationpolynomial where $s=\\frac{q^n-1}t,\\;t\\in\\mathbb{Z}^+$ such that $\\left.t\\;\\right|\\;q^n-1$.

Description

Keywords

Matematik

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 0101 mathematics, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
3

Source

Turkish Journal of Mathematics

Volume

43

Issue

5

Start Page

2154

End Page

2160
PlumX Metrics
Citations

CrossRef : 1

Scopus : 4

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.15361775

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.