Some Permutations and Complete Permutation Polynomials Over Finite Fields
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Tubitak Scientific & Technological Research Council Turkey
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this paper we determine $b\\in F_{q^n}^\\ast$ for which the polynomial $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a permutationpolynomial and determine $b\\in F_{q^n}^\\ast$ for which the polynominal $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a complete permutationpolynomial where $s=\\frac{q^n-1}t,\\;t\\in\\mathbb{Z}^+$ such that $\\left.t\\;\\right|\\;q^n-1$.
Description
Keywords
Matematik
Turkish CoHE Thesis Center URL
Fields of Science
0103 physical sciences, 0101 mathematics, 01 natural sciences
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
3
Source
Turkish Journal of Mathematics
Volume
43
Issue
5
Start Page
2154
End Page
2160
PlumX Metrics
Citations
CrossRef : 1
Scopus : 4
SCOPUS™ Citations
4
checked on Feb 02, 2026
Web of Science™ Citations
3
checked on Feb 02, 2026
Google Scholar™

OpenAlex FWCI
0.15361775
Sustainable Development Goals
11
SUSTAINABLE CITIES AND COMMUNITIES


