Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Performance Analysis of Cusbse2 Thin-Film Solar Cells With Cd-Free Window Layers
    (Elsevier, 2024) Surucu, Gokhan; Bal, Ersin; Gencer, Aysenur; Parlak, Mehmet; Surucu, Ozge
    This study investigates novel thin-film solar cells featuring CuSbSe2 (CASe) with ZnSnO and ZnMgO windows in the layer superstrate structure. For glass/ITO/ZnMgO/CASe/Cu + Au, the J-V measurements reveal a shortcircuit current density (Jsc) of 19.4 mA/cm2, an open-circuit voltage (Voc) of 0.28 Volts, a fill factor (FF) of 39.14 %, and a power conversion efficiency (eta) of 2.13 %. Similarly, glass/ITO/ZnSnO/CASe/Cu + Au exhibits Jsc around 19.6 mA/cm2, Voc around 0.31 Volts, FF around 40 %, and eta of 2.43 %. This paper is a pioneering contribution, introducing novel thin-film solar cells with a distinctive superstrate structure utilizing CASe in conjunction with ZnSnO and ZnMgO windows. The comprehensive study presents the first-ever characterization and performance evaluation of these innovative configurations, shedding light on their unique potential in advancing sustainable solar energy technology.
  • Article
    Citation - WoS: 45
    Citation - Scopus: 43
    Investigation of Structural, Electronic, Magnetic and Lattice Dynamical Properties for Xcobi (x: Ti, Zr, Hf) Half-Heusler Compounds
    (Elsevier, 2020) Surucu, Gokhan; Isik, Mehmet; Candan, Abdullah; Wang, Xiaotian; Gullu, Hasan Huseyin
    Structural, electronic, magnetic, mechanical and lattice dynamical properties of XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds have been investigated according to density functional theory and generalized gradient approximation. Among alpha, beta and gamma structural phases, gamma-phase structure has been found as the most stability characteristics depending on the calculated formation enthalpies, energy-volume dependencies and Cauchy pressures. Energy-volume plots of possible magnetic orders of gamma-phase XCoBi compounds have been analyzed and the most stable order has been found as paramagnetic nature. The theoretical studies on gamma-phase structures resulted in band gap energies of 0.96, 0.99 and 0.98 eV for TiCoBi, ZrCoBi and HfCoBi semiconducting compounds, respectively. Born-Huang criteria applied on elastic constants of interest compounds has indicated that gamma-phase is also mechanically stable for all studied compounds. In addition, various mechanical, lattice dynamical and thermodynamical parameters of XCoBi compounds have been calculated in the present study.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 34
    Enhanced Hydrogen Storage of a Functional Material: Hf2cf2< Mxene With Li Decoration
    (Elsevier, 2021) Gencer, Aysenur; Aydin, Sezgin; Surucu, Ozge; Wang, Xiaotian; Deligoz, Engin; Surucu, Gokhan
    In this paper, the hydrogen storage properties of the Li-decorated stable Hf2CF2 MXene layer, obtained by the exfoliation of Al from Hf2AlC and F-termination, are considered by using first-principles calculations based on Density Functional Theory. First, the stability characteristics of the host structure (Hf2CF2 layer) are examined by investigating bulk Hf2AlC. To enhance the adsorbed number of H-2 molecules, the well-defined initial H-2 coordinates are constructed by CLICH (Cap-Like Initial Conditions for Hydrogens) and Monte Carlo-based algorithms. After the geometry optimizations of the designed H-2 systems on the Li/Hf2CF2 layer, the adsorption energies of nH(2)/Li/Hf2CF2 n = 1-10, 15, 20 and 25 systems are calculated, and the suitable values (0.2-0.6 eV/H-2) are obtained up to 15H(2). For n = 20 and 25 systems, which have adsorption energies of 0.15 eV/H-2 and 0.16 eV/H-2, respectively. The structural properties and adsorption geometries of these molecules are analyzed. Additionally, the partial density of the states, electron density difference maps, and Mulliken atomic charges are presented to identify the actual binding mechanism of the systems. The results reveal that the Li-decorated Hf2CF2 MXene layer can be preferred for the hydrogen storage applications due to its stable nature and the convenient adsorption characteristics.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    The Investigation of Electronic Nature and Mechanical Properties Under Spin Effects for New Half-Metallic Ferromagnetic Chalcogenides Ag3crx4< (x = S, Se, and Te)
    (Elsevier, 2021) Erkisi, Aytac; Yildiz, Bugra; Wang, Xiaotian; Isik, Mehmet; Ozcan, Yusuf; Surucu, Gokhan
    This study presents the electronic and mechanical characteristics of ternary silver-based Ag3CrX4 (X = S, Se, and Te) chalcogenides having simple cubic crystalline structure (SC), conforming P4-3m (space group: 215) that are studied under the spin-polarized Generalized Gradient Approach (GGA) within the framework of the Density Functional Theory (DFT). The stable magnetic phase has been determined as the ferromagnetic (FM) phase for all studied systems. Then, phase stability, mechanical, thermal and electronic characteristics of Ag3CrX4 chalcogenides have been reported. In the calculated spin polarized electronic band structures for Ag3CrX4 chalcogenides, as an indicator of half-metallic behavior, metallicity has been observed in the majority spin channel, while indirect band gaps (1.04 eV for Ag3CrS4, 1.10 eV for Ag3CrSe4, and 1.25 eV for Ag3CrTe4) have been determined in the minority spin channel. Moreover, Ag3CrX4 chalcogenides have been found as thermodynamically stable and structurally synthesizable considering the calculated negative formation enthalpies. Elastic constants of studied chalcogenides satisfying Born-Huang criteria's pointed out the mechanical stability of materials. The predicted mechanical properties determined with elastic constants revealed that Ag3CrX4 chalcogenides belong to soft and ductile material family.