Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Parameter Identification for an Armstrong-Frederick Hardening Law for Supercooled Austenite of Sae 52100 Steel
    (Elsevier, 2010) Wolff, Michael; Suhr, Bettina; Simsir, Caner
    The mechanical properties of the supercooled austenite phase are sensitive parameters for the prediction of distortion of the components during heat treatments as the inelastic deformation occurs mostly on the soft austenite phase. Recent studies clarified that one of the overlooked issues related with the thermomechanical behavior of supercooled austenite during heat treatment and welding is its complicated cyclic hardening behavior (cf. Simsir et al., Acta Materialia, 2010). Based on those concerns, this article presents an optimization method for determination of temperature-dependent parameters for an Armstrong-Frederick model with combined non-linear kinematic and isotropic hardening, which can potentially pull the quality of simulations through. The results indicate that the proposed approach yields satisfactory results for simulation of heat treatments and welding even with a small and imperfect experimental data pool. (C) 2010 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    A Comprehensive Study of the Effect of Scanning Strategy on In939 Fabricated by Powder Bed Fusion-Laser Beam
    (Elsevier, 2024) Dogu, Merve Nur; Ozer, Seren; Yalcin, Mustafa Alp; Davut, Kemal; Obeidi, Muhannad Ahmed; Simsir, Caner; Brabazon, Dermot
    This study provides a comprehensive investigation into the effects of different scanning strategies on the material properties of IN939 fabricated using the PBF-LB process. The scanning strategies examined included alternating bi-directional scanning with rotation angles of 0 degrees, 45 degrees, 67 degrees, and 90 degrees between adjacent layers (named as shown), as well as alternating chessboard scanning with rotation angles of 67 degrees and 90 degrees (named as Q67 degrees and Q90 degrees). The results revealed that the 45 degrees and 67 degrees samples had the highest relative density, while the 0 degrees and Q67 degrees samples showed the highest average porosity. Moreover, various types of cracks, including solidification, solid-state, and oxide-induced cracks, were observed. Among the bi-directional scan samples, the 0 degrees sample displayed the most extensive cracking and the highest sigma max residual stress values in both XZ and XY planes. Conversely, the 45 degrees and 67 degrees samples exhibited fewer cracks. Notably, the lowest sigma max residual stress in the XZ planes among the bidirectional scan samples was observed in the 67 degrees sample. Additionally, microstructural analyses indicated differences in grain size and morphology, among the samples. Texture analysis indicated that the 0 degrees and 90 degrees samples exhibited strong cube textures, whereas the texture intensity weakened for the 45 degrees and 67 degrees samples. Moreover, the alternating chessboard scanning strategy led to rougher surfaces (higher Sa and Sz values) compared to the alternating bi-directional scanning strategy, regardless of the rotation angles. Furthermore, the microhardness values among the samples showed minimal variance, ranging between 321 + 14 HV and 356+ 7 HV.