Parameter identification for an Armstrong-Frederick hardening law for supercooled austenite of SAE 52100 steel

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

The mechanical properties of the supercooled austenite phase are sensitive parameters for the prediction of distortion of the components during heat treatments as the inelastic deformation occurs mostly on the soft austenite phase. Recent studies clarified that one of the overlooked issues related with the thermomechanical behavior of supercooled austenite during heat treatment and welding is its complicated cyclic hardening behavior (cf. Simsir et al., Acta Materialia, 2010). Based on those concerns, this article presents an optimization method for determination of temperature-dependent parameters for an Armstrong-Frederick model with combined non-linear kinematic and isotropic hardening, which can potentially pull the quality of simulations through. The results indicate that the proposed approach yields satisfactory results for simulation of heat treatments and welding even with a small and imperfect experimental data pool. (C) 2010 Elsevier B.V. All rights reserved.

Description

Simsir, Caner/0000-0001-9520-4695; Simsir, Caner/0009-0006-7871-4232; Suhr, Bettina/0000-0002-0259-4418

Keywords

Steel, Armstrong-Frederick hardening model, Parameter optimization, Supercooled austenite, SAE 52100

Turkish CoHE Thesis Center URL

Citation

7

WoS Q

Q3

Scopus Q

Source

Volume

50

Issue

2

Start Page

487

End Page

495

Collections