Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 4
    Citation - Scopus: 7
    The Integrated Usage of Lbp and Hog Transformations and Machine Learning Algorithms for Age Range Prediction From Facial Images
    (Univ Osijek, Tech Fac, 2018) Khalifa, Tariq; Sengul, Gokhan
    Age prediction is an active study field that can be used in many computer vision problems due to its importance and effectiveness. In this paper, we present extensive experiments and provide an efficient and accurate approach for age range prediction of people from facial images. First, we apply image resizing to unify all images' size, and Histogram Equalization technique to reduce the illumination effects on all facial images taken from FG-NET and UTD aging databases. Second, Histogram of Oriented Gradient (HOG) and Local Binary Pattern (LBP) are used to extract the features of these images, and then we combined both HOG and LBP features in order to attain better prediction. Finally, Support Vector Machine (SVM) and k-Nearest Neighbour (k-NN) are used for the classification processes. In addition, k-fold, Leave-One-Out (LOO) and Confusion Matrix (CM) are used to evaluate the performance of proposed methods. The extensive and intensified experiments show that combining HOG and LBP features improved the age range predicting performance up to 99.87%.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    A Study on the Performance of Magnetic Material Identification System by Sift-Brisk and Neural Network Methods
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Ege, Yavuz; Nazlibilek, Sedat; Kakilli, Adnan; Citak, Hakan; Kalender, Osman; Karacor, Deniz; Sengul, Gokhan
    Industry requires low-cost, low-power consumption, and autonomous remote sensing systems for detecting and identifying magnetic materials. Magnetic anomaly detection is one of the methods that meet these requirements. This paper aims to detect and identify magnetic materials by the use of magnetic anomalies of the Earth's magnetic field created by some buried materials. A new measurement system that can determine the images of the upper surfaces of buried magnetic materials is developed. The system consists of a platform whose position is automatically controlled in x-axis and y-axis and a KMZ51 anisotropic magneto-resistive sensor assembly with 24 sensors mounted on the platform. A new identification system based on scale-invariant feature transform (SIFT)-binary robust invariant scalable keypoints (BRISKs) as keypoint and descriptor, respectively, is developed for identification by matching the similar images of magnetic anomalies. The results are compared by the conventional principal component analysis and neural net algorithms. On the six selected samples and the combinations of these samples, 100% correct classification rates were obtained.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    A Comprehensive Assessment Plan for Accreditation in Engineering Education: A Case Study in Turkey
    (Tempus Publications, 2015) Turhan, Cigdem; Sengul, Gokhan; Koyuncu, Murat; Information Systems Engineering; Software Engineering; Computer Engineering
    This paper describes the procedure followed by Computer Engineering and Software Engineering programs at Atilim University, Ankara, Turkey, which led to the granting of five years of accreditation by MUDEK, the local accreditation body authorized by The European Network for Accreditation of Engineering Education (ENAEE) to award the EUR-ACElabel, and a full member signatory of Washington Accord of International Engineering Alliance (IEA). It explains the organizational structure established for preparation, determination and measurement of the educational objectives, program outcomes, course outcomes, and the continuous improvement cycle carried out during the preparation period. The aim of the paper is to share methods and experiences which may be beneficial for the other programs that are intended for accreditation.