5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 9Citation - Scopus: 9Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets(Bentham Science Publ Ltd, 2019) Ozkan, Akin; Isgor, Sultan Belgin; Sengul, Gokhan; Isgor, Yasemin GulgunBackground: Dye-exclusion based cell viability analysis has been broadly used in cell biology including anticancer drug discovery studies. Viability analysis refers to the whole decision making process for the distinction of dead cells from live ones. Basically, cell culture samples are dyed with a special stain called trypan blue, so that the dead cells are selectively colored to darkish. This distinction provides critical information that may be used to expose influences of the studied drug on considering cell culture including cancer. Examiner's experience and tiredness substantially affect the consistency throughout the manual observation of cell viability. The unsteady results of cell viability may end up with biased experimental results accordingly. Therefore, a machine learning based automated decision-making procedure is inevitably needed to improve consistency of the cell viability analysis. Objective: In this study, we investigate various combinations of classifiers and feature extractors (i.e. classification models) to maximize the performance of computer vision-based viability analysis. Method: The classification models are tested on novel hemocytometer image datasets which contain two types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). Results: From the experimental results, k-Nearest Neighbor (KNN) and Random Forest (RF) by combining Local Phase Quantization (LPQ) achieve the lowest misclassification rates that are 0.031 and 0.082, respectively. Conclusion: The experimental results show that KNN and RF with LPQ can be powerful alternatives to the conventional manual cell viability analysis. Also, the collected datasets are released from the "biochem.atilim.edu.tr/datasets/ " web address publically to academic studies.Article Citation - WoS: 2Citation - Scopus: 3A Hybrid Approach for Semantic Image Annotation(Ieee-inst Electrical Electronics Engineers inc, 2021) Sezen, Arda; Turhan, Cigdem; Sengul, GokhanIn this study, a framework that generates natural language descriptions of images within a controlled environment is proposed. Previous work on neural networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict an image. However, creating a textual description of an image is a completely different phenomenon, structurally, syntactically, and semantically. The proposed semantic image annotation framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes to generate sentential descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and semantic web technologies. We detect objects from unlabeled sports images using a deep learning model based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions with high probability. The proposed framework not only produces probabilistically labeled images, but also the contextual results obtained from a knowledge base exploiting the relationship between the objects. The framework's object detection and prediction performances are tested with two datasets where the first one includes individual instances of images containing everyday scenes of common objects and the second custom dataset contains sports images collected from the web. Moreover, a sample image set is created to obtain annotation result data by applying all framework layers. Experimental results show that the framework is effective in this controlled environment and can be used with other applications via web services within the supported sports domain.Article Citation - WoS: 47Citation - Scopus: 66Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications(Elsevier Sci Ltd, 2022) Sengul, Gokhan; Karakaya, Murat; Misra, Sanjay; Abayomi-Alli, Olusola O.; Damasevicius, RobertasWe implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activityout cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.Article Citation - WoS: 18Citation - Scopus: 24Fusion of Smartphone Sensor Data for Classification of Daily User Activities(Springer, 2021) Sengul, Gokhan; Ozcelik, Erol; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, RytisNew mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.Article Citation - WoS: 9Citation - Scopus: 30An Improved Random Bit-Stuffing Technique With a Modified Rsa Algorithm for Resisting Attacks in Information Security (rbmrsa)(Cairo Univ, Fac Computers & information, 2022) Mojisola, Falowo O.; Misra, Sanjay; Febisola, C. Falayi; Abayomi-Alli, Olusola; Sengul, GokhanThe recent innovations in network application and the internet have made data and network security the major role in data communication system development. Cryptography is one of the outstanding and powerful tools for ensuring data and network security. In cryptography, randomization of encrypted data increases the security level as well as the Computational Complexity of cryptographic algorithms involved. This research study provides encryption algorithms that bring confidentiality and integrity based on two algorithms. The encryption algorithms include a well-known RSA algorithm (1024 key length) with an enhanced bit insertion algorithm to enhance the security of RSA against different attacks. The security classical RSA has depreciated irrespective of the size of the key length due to the development in computing technology and hacking system. Due to these lapses, we have tried to improve on the contribution of the paper by enhancing the security of RSA against different attacks and also increasing diffusion degree without increasing the key length. The security analysis of the study was compared with classical RSA of 1024 key length using mathematical evaluation proofs, the experimental results generated were compared with classical RSA of 1024 key length using avalanche effect in (%) and computational complexity as performance evaluation metrics. The results show that RBMRSA is better than classical RSA in terms of security but at the cost of execution time. (C) 2022 THE AUTHORS. Published by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.

