A Hybrid Approach for Semantic Image Annotation

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In this study, a framework that generates natural language descriptions of images within a controlled environment is proposed. Previous work on neural networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict an image. However, creating a textual description of an image is a completely different phenomenon, structurally, syntactically, and semantically. The proposed semantic image annotation framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes to generate sentential descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and semantic web technologies. We detect objects from unlabeled sports images using a deep learning model based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions with high probability. The proposed framework not only produces probabilistically labeled images, but also the contextual results obtained from a knowledge base exploiting the relationship between the objects. The framework's object detection and prediction performances are tested with two datasets where the first one includes individual instances of images containing everyday scenes of common objects and the second custom dataset contains sports images collected from the web. Moreover, a sample image set is created to obtain annotation result data by applying all framework layers. Experimental results show that the framework is effective in this controlled environment and can be used with other applications via web services within the supported sports domain.

Description

Turhan, Cigdem/0000-0002-6595-7095; Şengül, Gökhan/0000-0003-2273-4411; Sezen, Arda/0000-0002-7615-3623

Keywords

Annotations, Ontologies, Sports, Image annotation, Semantics, Training, Computational modeling, Semantic image annotation, picture interpretation, ontology, Semantic image annotation, picture interpretation, ontology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
1

Source

IEEE Access

Volume

9

Issue

Start Page

131977

End Page

131994

Collections

PlumX Metrics
Citations

Scopus : 3

Captures

Mendeley Readers : 10

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.20443896

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo