A Hybrid Approach for Semantic Image Annotation

dc.authorid Turhan, Cigdem/0000-0002-6595-7095
dc.authorid Şengül, Gökhan/0000-0003-2273-4411
dc.authorid Sezen, Arda/0000-0002-7615-3623
dc.authorscopusid 57271674300
dc.authorscopusid 24315330000
dc.authorscopusid 8402817900
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.authorwosid Turhan, Cigdem/AAG-4445-2019
dc.authorwosid Şengül, Gökhan/AAA-2788-2022
dc.contributor.author Sezen, Arda
dc.contributor.author Turhan, Cigdem
dc.contributor.author Sengul, Gokhan
dc.contributor.other Computer Engineering
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:19:29Z
dc.date.available 2024-07-05T15:19:29Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp [Sezen, Arda] OSTIM Tech Univ, Dept Software Engn, TR-06374 Ankara, Turkey; [Turhan, Cigdem] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkey en_US
dc.description Turhan, Cigdem/0000-0002-6595-7095; Şengül, Gökhan/0000-0003-2273-4411; Sezen, Arda/0000-0002-7615-3623 en_US
dc.description.abstract In this study, a framework that generates natural language descriptions of images within a controlled environment is proposed. Previous work on neural networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict an image. However, creating a textual description of an image is a completely different phenomenon, structurally, syntactically, and semantically. The proposed semantic image annotation framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes to generate sentential descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and semantic web technologies. We detect objects from unlabeled sports images using a deep learning model based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions with high probability. The proposed framework not only produces probabilistically labeled images, but also the contextual results obtained from a knowledge base exploiting the relationship between the objects. The framework's object detection and prediction performances are tested with two datasets where the first one includes individual instances of images containing everyday scenes of common objects and the second custom dataset contains sports images collected from the web. Moreover, a sample image set is created to obtain annotation result data by applying all framework layers. Experimental results show that the framework is effective in this controlled environment and can be used with other applications via web services within the supported sports domain. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ACCESS.2021.3114968
dc.identifier.endpage 131994 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85115666025
dc.identifier.scopusquality Q1
dc.identifier.startpage 131977 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2021.3114968
dc.identifier.uri https://hdl.handle.net/20.500.14411/1968
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000702546600001
dc.identifier.wosquality Q2
dc.institutionauthor Sezen, Arda
dc.institutionauthor Turhan, Çiğdem
dc.institutionauthor Şengül, Gökhan
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Annotations en_US
dc.subject Ontologies en_US
dc.subject Sports en_US
dc.subject Image annotation en_US
dc.subject Semantics en_US
dc.subject Training en_US
dc.subject Computational modeling en_US
dc.subject Semantic image annotation en_US
dc.subject picture interpretation en_US
dc.subject ontology en_US
dc.title A Hybrid Approach for Semantic Image Annotation en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isAuthorOfPublication df768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery 367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections