A Hybrid Approach for Semantic Image Annotation

dc.authoridTurhan, Cigdem/0000-0002-6595-7095
dc.authoridŞengül, Gökhan/0000-0003-2273-4411
dc.authoridSezen, Arda/0000-0002-7615-3623
dc.authorscopusid57271674300
dc.authorscopusid24315330000
dc.authorscopusid8402817900
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidTurhan, Cigdem/AAG-4445-2019
dc.authorwosidŞengül, Gökhan/AAA-2788-2022
dc.contributor.authorSezen, Arda
dc.contributor.authorTurhan, Cigdem
dc.contributor.authorSengul, Gokhan
dc.contributor.otherComputer Engineering
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:19:29Z
dc.date.available2024-07-05T15:19:29Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Sezen, Arda] OSTIM Tech Univ, Dept Software Engn, TR-06374 Ankara, Turkey; [Turhan, Cigdem] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionTurhan, Cigdem/0000-0002-6595-7095; Şengül, Gökhan/0000-0003-2273-4411; Sezen, Arda/0000-0002-7615-3623en_US
dc.description.abstractIn this study, a framework that generates natural language descriptions of images within a controlled environment is proposed. Previous work on neural networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict an image. However, creating a textual description of an image is a completely different phenomenon, structurally, syntactically, and semantically. The proposed semantic image annotation framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes to generate sentential descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and semantic web technologies. We detect objects from unlabeled sports images using a deep learning model based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions with high probability. The proposed framework not only produces probabilistically labeled images, but also the contextual results obtained from a knowledge base exploiting the relationship between the objects. The framework's object detection and prediction performances are tested with two datasets where the first one includes individual instances of images containing everyday scenes of common objects and the second custom dataset contains sports images collected from the web. Moreover, a sample image set is created to obtain annotation result data by applying all framework layers. Experimental results show that the framework is effective in this controlled environment and can be used with other applications via web services within the supported sports domain.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/ACCESS.2021.3114968
dc.identifier.endpage131994en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85115666025
dc.identifier.scopusqualityQ1
dc.identifier.startpage131977en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3114968
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1968
dc.identifier.volume9en_US
dc.identifier.wosWOS:000702546600001
dc.identifier.wosqualityQ2
dc.institutionauthorSezen, Arda
dc.institutionauthorTurhan, Çiğdem
dc.institutionauthorŞengül, Gökhan
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnnotationsen_US
dc.subjectOntologiesen_US
dc.subjectSportsen_US
dc.subjectImage annotationen_US
dc.subjectSemanticsen_US
dc.subjectTrainingen_US
dc.subjectComputational modelingen_US
dc.subjectSemantic image annotationen_US
dc.subjectpicture interpretationen_US
dc.subjectontologyen_US
dc.titleA Hybrid Approach for Semantic Image Annotationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isAuthorOfPublicationdf768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections