A Hybrid Approach for Semantic Image Annotation

dc.contributor.author Sezen, Arda
dc.contributor.author Turhan, Cigdem
dc.contributor.author Sengul, Gokhan
dc.contributor.other Computer Engineering
dc.contributor.other Software Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:19:29Z
dc.date.available 2024-07-05T15:19:29Z
dc.date.issued 2021
dc.description Turhan, Cigdem/0000-0002-6595-7095; Şengül, Gökhan/0000-0003-2273-4411; Sezen, Arda/0000-0002-7615-3623 en_US
dc.description.abstract In this study, a framework that generates natural language descriptions of images within a controlled environment is proposed. Previous work on neural networks mostly focused on choosing the right labels and/or increasing the number of related labels to depict an image. However, creating a textual description of an image is a completely different phenomenon, structurally, syntactically, and semantically. The proposed semantic image annotation framework presents a novel combination of deep learning models and aligned annotation results derived from the instances of the ontology classes to generate sentential descriptions of images. Our hybrid approach benefits from the unique combination of deep learning and semantic web technologies. We detect objects from unlabeled sports images using a deep learning model based on a residual network and a feature pyramid network, with the focal loss technique to obtain predictions with high probability. The proposed framework not only produces probabilistically labeled images, but also the contextual results obtained from a knowledge base exploiting the relationship between the objects. The framework's object detection and prediction performances are tested with two datasets where the first one includes individual instances of images containing everyday scenes of common objects and the second custom dataset contains sports images collected from the web. Moreover, a sample image set is created to obtain annotation result data by applying all framework layers. Experimental results show that the framework is effective in this controlled environment and can be used with other applications via web services within the supported sports domain. en_US
dc.identifier.doi 10.1109/ACCESS.2021.3114968
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85115666025
dc.identifier.uri https://doi.org/10.1109/ACCESS.2021.3114968
dc.identifier.uri https://hdl.handle.net/20.500.14411/1968
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.ispartof IEEE Access
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Annotations en_US
dc.subject Ontologies en_US
dc.subject Sports en_US
dc.subject Image annotation en_US
dc.subject Semantics en_US
dc.subject Training en_US
dc.subject Computational modeling en_US
dc.subject Semantic image annotation en_US
dc.subject picture interpretation en_US
dc.subject ontology en_US
dc.title A Hybrid Approach for Semantic Image Annotation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turhan, Cigdem/0000-0002-6595-7095
gdc.author.id Şengül, Gökhan/0000-0003-2273-4411
gdc.author.id Sezen, Arda/0000-0002-7615-3623
gdc.author.institutional Sezen, Arda
gdc.author.institutional Turhan, Çiğdem
gdc.author.institutional Şengül, Gökhan
gdc.author.scopusid 57271674300
gdc.author.scopusid 24315330000
gdc.author.scopusid 8402817900
gdc.author.wosid Sengul, Gokhan/G-8213-2016
gdc.author.wosid Turhan, Cigdem/AAG-4445-2019
gdc.author.wosid Şengül, Gökhan/AAA-2788-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Sezen, Arda] OSTIM Tech Univ, Dept Software Engn, TR-06374 Ankara, Turkey; [Turhan, Cigdem] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkey en_US
gdc.description.endpage 131994 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 131977 en_US
gdc.description.volume 9 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3202414106
gdc.identifier.wos WOS:000702546600001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.608669E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Semantic image annotation
gdc.oaire.keywords picture interpretation
gdc.oaire.keywords ontology
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 2.4745905E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.198
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 1
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication 367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isAuthorOfPublication df768b22-7cc0-4650-882f-5af552c7a5f2
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery 367853fe-83ca-445e-a3be-00c62fcb4e35
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections