2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 6Citation - Scopus: 8Finite Element Analysis of Fgm Dental Crowns Using Phase-Field Approach(Elsevier, 2023) Sait, Ferit; Saeidi, Nazanin; Korkmaz, TuranFunctionally graded materials (FGMs) - categorized in advanced composite materials - are specially designed to reduce the stresses and failure due to material mismatches. Advances in manufacturing techniques have brought FGMs into use in a variety of applications. However, the numerical analysis is still challenging due to the difficulties in simulations of non-homogeneous material domains of complex parts. Presenting a numerical procedure that both facilitates the implementation of material non-homogeneity in geometrically complex mediums, and increases the accuracy of the calculations using a phase-field approach, this study investigates the usage of FGMs in dental prostheses. For this purpose, a porcelain fused to metal (PFM) mandibular first molar FGM crown is simulated and analyzed under the maximum masticatory bite force, and eventually the results are compared to a PFM crown prepared conventionally.Article A Coupled Modelling and Simulation Approach to Electromagnetic Sheet Metal Forming(Taylor & Francis Ltd, 2025) Aslan, Ozgur; Kabakci, Gamze Cakir; Sait, Ferit; Camalan, Caner; Baranoglu, Besim; Bayraktar, EminThis study presents a coupled numerical and experimental investigation of electromagnetic forming (EMF) for aluminium sheets. A custom simulation framework is developed in ABAQUS/Standard using user-defined material (UMAT) and load (DLOAD) subroutines. The magnetic pressure exerted on the workpiece is computed through a finite difference-based solution of Maxwell's equations and applied to the mechanical solver. The mechanical response of the material is modelled using a strain-rate-sensitive plasticity law calibrated for aluminium 7075-O. Experimental forming trials are performed using a custom-built EMF setup, and the results are compared with numerical predictions to validate the model. The comparison shows strong agreement in deformation profiles, confirming the predictive capability of the proposed simulation strategy. This work offers a reliable computational tool for optimising EMF processes and provides insights into material behaviour under high strain rate electromagnetic loading.

