2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 5Citation - Scopus: 5Structural and Dielectric Performance of the Ba(zn1/3< Perovskite Ceramics(Iop Publishing Ltd, 2019) Qasrawi, A. F.; Sahin, Ethem Ilhan; Emek, Mehriban; Kartal, Mesut; Kargin, SerdarIn this work, we have explored the antimony doping effects on the structural and dielectric properties of Ba(Zn1/3Nb2/3)O-3 ceramics (BZN). The ceramics displayed perovskite structures with a lattice constant that decreases with increasing Sb content. The antimony solubility limit of the BZN ceramics is x < 0.50. Belowthis limit and in the range of 0.30 <= x <= 0.40, the microstrain, the dislocation density and the stacking faults decreased and the crystallite size increases with increasing Sb content in the composition of BZN. When the limit is exceeded minor phases are predicted by software analysis and confirmed by the experimental techniques. The presence of these phases is also verified by the scanning electron microscopy and energy dispersive x-ray spectroscopy techniques. Increasing the Sb content is observed to decrease the value of the dielectric constant. The Sb doped BZN ceramics exhibits high dielectric quality factors that nominate it for applications in electronics as radio waves resonators.Article Citation - WoS: 5Citation - Scopus: 4Nickel Doping Effects on the Structural and Dielectric Properties of Ba(zn1/3< Perovskite Ceramics(Springer, 2021) Qasrawi, A. F.; Sahin, Ethem Ilhan; Emek, MehribanThe effects of nickel doping into Ba(Zn1/3Nb2/3)O-3 (acronym: BZN) ceramics is structurally, morphologically and electrically investigated. The nickel substitution in sites of Zn which was carried out by the solid state reaction technique strongly enhanced the structural, morphological and electrical performances of the BZN. Specifically, while the lattice constant and crystallite sizes increased, the microstrain and the defect density decreased. The relative density of the BZN ceramics increased from 95.40% to 98.24% upon doping of Ni with content of x = 0.05. In addition, the Ni doping increased the values of electrical conductivity without significant changes in the dielectric constant values. It is also observed that the doping the BZN ceramics highly altered the temperature dependent variation of the relative dielectric constant. In the temperature range of 293-473 K, the x = 0.05 Ni doped BZN samples were less sensitive to temperature. The dynamics of the temperature dependent dielectric response is dominated by the coupled defects excitation mechanisms. Both of the temperatures and frequency dependent dielectric constant, dielectric loss and electrical conductivity suggests that the Ni doped Ba(Zn1/3Nb2/3)O-3 ceramics is more appropriate for electronic device fabrication than the pure ones.

