Nickel Doping Effects on the Structural and Dielectric Properties of Ba(zn<sub>1/3< Perovskite Ceramics

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

The effects of nickel doping into Ba(Zn1/3Nb2/3)O-3 (acronym: BZN) ceramics is structurally, morphologically and electrically investigated. The nickel substitution in sites of Zn which was carried out by the solid state reaction technique strongly enhanced the structural, morphological and electrical performances of the BZN. Specifically, while the lattice constant and crystallite sizes increased, the microstrain and the defect density decreased. The relative density of the BZN ceramics increased from 95.40% to 98.24% upon doping of Ni with content of x = 0.05. In addition, the Ni doping increased the values of electrical conductivity without significant changes in the dielectric constant values. It is also observed that the doping the BZN ceramics highly altered the temperature dependent variation of the relative dielectric constant. In the temperature range of 293-473 K, the x = 0.05 Ni doped BZN samples were less sensitive to temperature. The dynamics of the temperature dependent dielectric response is dominated by the coupled defects excitation mechanisms. Both of the temperatures and frequency dependent dielectric constant, dielectric loss and electrical conductivity suggests that the Ni doped Ba(Zn1/3Nb2/3)O-3 ceramics is more appropriate for electronic device fabrication than the pure ones.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Şahin, Ethem ilhan/0000-0001-7859-9066

Keywords

Ba(Zn1, 32, 3 ceramics, x-ray diffraction, dielectric, BZN, Ni doping

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Source

Volume

50

Issue

4

Start Page

2223

End Page

2231

Collections