Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Physical and Biological Characteristics of Electrospun Poly (vinyl Alcohol) and Reduced Graphene Oxide Nanofibrous Structure
    (Taylor & Francis Ltd, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Gozutok, Melike; Sadhu, Veera
    The fabrication of graphene-based nanocomposites has been a topic of increasing interest due to graphene's exceptional physical properties and the ability to enhance the properties of various polymeric materials. Evaluating the biocompatibility of these nanocomposites is crucial to ensure their safe and effective use in biomedical applications. This study characterized and assessed the biocompatibility of previously fabricated electrospun polyvinyl alcohol (PVA)/reduced graphene oxide rGO fibrous structures by conducting a comprehensive assessment of their physical and biological characteristics. Contact angle measurements revealed that adding rGO to electrospun PVA fibers enhanced the surface wettability, improving the fibrous structure's PBS absorption capacity and degradation behavior. Including the rGO content resulted in a higher water vapor transmission rate, reaching similar to 48 g/m2day for PVA + 0.5 wt.% rGO and similar to 45 g/m2day for PVA + 1.0 wt.% rGO, compared to similar to 40 g/m2day for electrospun PVA fibers. Cell culture studies, including MTT assay, alkaline phosphatase (ALP) activity analysis, alizarin red staining, fluorescence microscopy, and SEM analyses, demonstrated that electrospun PVA + 1.0 wt.% rGO nanocomposites exhibited superior cell viability, proliferation, and growth compared to other samples, due to the improved physical properties of the PVA + 1.0 wt.% rGO fibrous structure.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 24
    Preparation of Electrospun Pcl-Based Scaffolds by Mono/Multi-functionalized Go
    (Iop Publishing Ltd, 2019) Basar, Ahmet Ozan; Sadhu, Veera; Sasmazel, Hilal Turkoglu
    In the present study, sythetic biodegradable polymer poly(epsilon-caprolactone) (PCL) and graphene oxide (GO) were combined together to prepare 3D, composite tissue scaffolds (PCL/GO scaffolds) by using electrospinning technique. Also, the influence of Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) and/or thiophene (Th) modified GO on the composite PCL/GO mats (PCL/GO, PCL/GO-GRGDSP, PCL/ GO-Th, PCL/GO-GRGDSP-Th) was further investigated. Characteristic examinations of the scaffolds were carried out by scanning electron microscope (SEM), contact angle (CA) measurements, x-ray photoelectron spectroscopy, TGA, electrical conductivity tests, phosphate buffer saline absorption and shrinkage tests and mechanical tests. All of the scaffolds were exhibited suitable bead free and uniform morphology according to SEM images. With the addition of GO, better hydrophilicity and a slight CA decrease (similar to 5 degrees) for the PCL/GO scaffolds were observed. Mechanical properties were reinforced drastically with the addition and well-dispersion of GO into PCL matrix. The incorporation of PCL and GO exhibited enhanced electrical conductivity and the highest value was found for PCL/GO-GRGDSP-Th (2%) as 15.06 mu S cm(-1). The MG-63 osteoblast cell culture studies (MTT assay, ALP activity, Alizarin-Red staining, fluorescence and SEM analyses) showed that PCL/GO-GRGDSP-Th (1%) scaffolds exhibited the highest biocompatibility performance (1.87 fold MTT absorbance value comparing with neat PCL) due to the advanced properties of GO and the biological interfaces.