Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 21
    Citation - Scopus: 21
    Design and Applications of Yb/Ga2< Schottky Barriers
    (Ieee-inst Electrical Electronics Engineers inc, 2017) Khanfar, Hazem K.; Qasrawı, Atef Fayez Hasan; Qasrawi, Atef F.; Zakarneh, Yasmeen A.; Gasanly, N. M.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this paper, the Ga2Se3 crystals are used to design a Yb/Ga2Se3/C Schottky barrier. The device structure is investigated by the X-ray diffraction technique, which reveals a monoclinic-face-centered cubic interfacing type of structure. The barrier is studied by means of current (I)-voltage (V) characteristics in the dark and under light through photoexcitation from tungsten lamp and from the He-Ne laser. In addition, the impedance spectroscopy of these devices is studied in the frequency range of 10-1400 MHz. The photoexcited I-V curve analysis allowed investigating the biasing voltage, illumination power, and energy effects on the diode physical parameters, which are presented by the rectification ratio, the Schottky barrier height, the ideality factor, the series resistance, the photosensitivity, the responsivity, and the external quantum efficiency (EQE). While a maximum photosensitivity of 42 was observed for laser excitation with a wavelength of 632 nm at a reverse bias of 4.4 V, the EQE reached value of 1652% at 19.0 V. On the other hand, the ac current conduction analysis of the electrical conductivity, which was determined from the impedance spectral analysis, indicated that the ac signal processing through the Yb/Ga2Se3/C samples is due to the correlated hopping conduction through localized states of Fermi density of 3.98 x 10(19) eV(-1) cm(-3). The high-and biasing-dependent EQE% nominates the Yb/Ga2Se3/C as a tunable optoelectronic device.
  • Article
    Citation - WoS: 28
    Citation - Scopus: 29
    Annealing Effects on the Structural and Optical Properties of Agin5s8< Thin Films
    (Elsevier Science Sa, 2008) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Due to its importance as a perspective material for application in optoelectronic semiconductor devices, the thermal annealing effects on the structural and optical properties of the as-grown vacuum evaporated AgIn5S8 thin films have been investigated. The X-ray data analysis have shown that these films are polycrystalline in nature and exhibit better crystallization with increasing crystallite size and slightly, decreasing unit cell lattice parameter as annealing temperature is raised from 450 to 600 K. The optical energy band gap for the as-grown and thermally annealed films is found to be of direct allowed transitions type. The energy band gap exhibited values of 1.78, 1.74 and 1.62 eV as the samples were annealed at, 450 and 600 K, respectively. This indicates the ability of altering the band gap values of this material by the thermal annealing process. The structural and optical features seem to be suitable for semiconductor device production such as solar cell converters, which has successfully been fabricated by others, metal-insulator-semiconductor (MIS) and metal - oxide - semiconductor (MOS) devices, as well. (c) 2007 Elsevier B.V. All rights reserved.