Design and Applications of Yb/Ga<sub>2< Schottky Barriers

Loading...
Publication Logo

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this paper, the Ga2Se3 crystals are used to design a Yb/Ga2Se3/C Schottky barrier. The device structure is investigated by the X-ray diffraction technique, which reveals a monoclinic-face-centered cubic interfacing type of structure. The barrier is studied by means of current (I)-voltage (V) characteristics in the dark and under light through photoexcitation from tungsten lamp and from the He-Ne laser. In addition, the impedance spectroscopy of these devices is studied in the frequency range of 10-1400 MHz. The photoexcited I-V curve analysis allowed investigating the biasing voltage, illumination power, and energy effects on the diode physical parameters, which are presented by the rectification ratio, the Schottky barrier height, the ideality factor, the series resistance, the photosensitivity, the responsivity, and the external quantum efficiency (EQE). While a maximum photosensitivity of 42 was observed for laser excitation with a wavelength of 632 nm at a reverse bias of 4.4 V, the EQE reached value of 1652% at 19.0 V. On the other hand, the ac current conduction analysis of the electrical conductivity, which was determined from the impedance spectral analysis, indicated that the ac signal processing through the Yb/Ga2Se3/C samples is due to the correlated hopping conduction through localized states of Fermi density of 3.98 x 10(19) eV(-1) cm(-3). The high-and biasing-dependent EQE% nominates the Yb/Ga2Se3/C as a tunable optoelectronic device.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686; Khanfar, Hazem k./0000-0002-3015-4049

Keywords

Optical materials, Ga2Se3 crystals, optoelectronic, impedance

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
20

Source

IEEE Sensors Journal

Volume

17

Issue

14

Start Page

4429

End Page

4434

Collections

PlumX Metrics
Citations

CrossRef : 14

Scopus : 21

Captures

Mendeley Readers : 12

SCOPUS™ Citations

21

checked on Feb 09, 2026

Web of Science™ Citations

21

checked on Feb 09, 2026

Page Views

4

checked on Feb 09, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.32138903

Sustainable Development Goals

SDG data is not available