2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 21Citation - Scopus: 21Design and Applications of Yb/Ga2< Schottky Barriers(Ieee-inst Electrical Electronics Engineers inc, 2017) Khanfar, Hazem K.; Qasrawı, Atef Fayez Hasan; Qasrawi, Atef F.; Zakarneh, Yasmeen A.; Gasanly, N. M.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringIn this paper, the Ga2Se3 crystals are used to design a Yb/Ga2Se3/C Schottky barrier. The device structure is investigated by the X-ray diffraction technique, which reveals a monoclinic-face-centered cubic interfacing type of structure. The barrier is studied by means of current (I)-voltage (V) characteristics in the dark and under light through photoexcitation from tungsten lamp and from the He-Ne laser. In addition, the impedance spectroscopy of these devices is studied in the frequency range of 10-1400 MHz. The photoexcited I-V curve analysis allowed investigating the biasing voltage, illumination power, and energy effects on the diode physical parameters, which are presented by the rectification ratio, the Schottky barrier height, the ideality factor, the series resistance, the photosensitivity, the responsivity, and the external quantum efficiency (EQE). While a maximum photosensitivity of 42 was observed for laser excitation with a wavelength of 632 nm at a reverse bias of 4.4 V, the EQE reached value of 1652% at 19.0 V. On the other hand, the ac current conduction analysis of the electrical conductivity, which was determined from the impedance spectral analysis, indicated that the ac signal processing through the Yb/Ga2Se3/C samples is due to the correlated hopping conduction through localized states of Fermi density of 3.98 x 10(19) eV(-1) cm(-3). The high-and biasing-dependent EQE% nominates the Yb/Ga2Se3/C as a tunable optoelectronic device.Article Citation - WoS: 5Citation - Scopus: 4Properties of Se/Inse Thin-Film Interface(Springer, 2016) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Kayed, T. S.; Elsayed, Khaled A.; Kayed, Tarek Said; Qasrawı, Atef Fayez Hasan; Kayed, Tarek Said; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringSe, InSe, and Se/InSe thin films have been prepared by the physical vapor deposition technique at pressure of similar to 10(-5) torr. The structural, optical, and electrical properties of the films and Se/InSe interface were investigated by means of x-ray diffraction (XRD) analysis, ultraviolet-visible spectroscopy, and current-voltage (I-V) characteristics. XRD analysis indicated that the prepared InSe films were amorphous while the Se films were polycrystalline having hexagonal structure with unit cell parameters of a = 4.3544 and c = 4.9494 . Spectral reflectance and transmittance analysis showed that both Se and InSe films exhibited indirect allowed transitions with energy bandgaps of 1.92 eV and 1.34 eV, respectively. The Se/InSe interface exhibited two energy bandgaps of 0.98 eV and 1.73 eV above and below 2.2 eV, respectively. Dielectric constant values were also calculated from reflectance spectra for the three layers in the frequency range of 500 THz to 272 THz. The dielectric constant exhibited a promising feature suggesting use of the Se/InSe interface as an optical resonator. Moreover, the Au/Se/InSe/Ag heterojunction showed some rectifying properties that could be used in standard optoelectronic devices. The ideality factor and height of the energy barrier to charge carrier motion in this device were found to be 1.72 and 0.66 eV, respectively.

