3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 6Citation - Scopus: 5Finite Number of Fibre Products of Kummer Covers and Curves With Many Points Over Finite Fields(Springer, 2014) Ozbudak, Ferruh; Temur, Burcu GulmezWe study fibre products of a finite number of Kummer covers of the projective line over finite fields. We determine the number of rational points of the fibre product over a rational point of the projective line, which improves the results of Ozbudak and Temur (Appl Algebra Eng Commun Comput 18:433-443, 2007) substantially. We also construct explicit examples of fibre products of Kummer covers with many rational points, including a record and two new entries for the current table (http://www.manypoints.org, 2011).Article Citation - WoS: 1An exhaustive computer search for finding new curves with many points among fibre products of two Kummer covers over F5 and F7(Tubitak Scientific & Technological Research Council Turkey, 2013) Ozbudak, Ferruh; Temur, Burcu Gulmez; Yayla, OguzIn this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F-5 and F-7. At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product y(1)(3)= 5(x + 2)(x + 5)/x, y(2)(3)= 3x(2()x + 5)/x + 3 over F-7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N-7(7) of F-7-rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Ozbudak and Temur (2012) for determining the number of rational points of such curves.Article Citation - WoS: 2Citation - Scopus: 2Further Results on Fibre Products of Kummer Covers and Curves With Many Points Over Finite Fields(Amer inst Mathematical Sciences-aims, 2016) Ozbudak, Ferruh; Temur, Burcu Gulmez; Yayla, OguzWe study fibre products of an arbitrary number of Kummer covers of the projective line over F-q under suitable weak assumptions. If q - 1 = r(n) for some prime r, then we completely determine the number of rational points over a rational point of the projective line. Using this result we obtain explicit examples of fibre products of three Kummer covers supplying new entries for the current table of curves with many points (http://www.manypoints.org,October 31 2015).

