An exhaustive computer search for finding new curves with many points among fibre products of two Kummer covers over F<sub>5</sub> and F<sub>7</sub>

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

In this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F-5 and F-7. At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product y(1)(3)= 5(x + 2)(x + 5)/x, y(2)(3)= 3x(2()x + 5)/x + 3 over F-7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N-7(7) of F-7-rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Ozbudak and Temur (2012) for determining the number of rational points of such curves.

Description

/0000-0002-1694-9283; YAYLA, Oğuz/0000-0001-8945-2780

Keywords

Curves with many points over finite fields, Kummer covers, fibre products

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

Q2

Scopus Q

Q2

Source

Volume

37

Issue

6

Start Page

908

End Page

913

Collections