Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 35
    Citation - Scopus: 43
    Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives
    (Springer, 2018) Abdeljawad, Thabet; Agarwal, Ravi P.; Alzabut, Jehad; Jarad, Fahd; Ozbekler, Abdullah
    We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales
    (Springer-verlag Italia Srl, 2017) Agarwal, Ravi P.; Cetin, Erbil; Ozbekler, Abdullah
    In this paper, we present some newHartman and Lyapunov inequalities for second-order forced dynamic equations on time scales T with mixed nonlinearities: x(Delta Delta)(t) + Sigma(n)(k=1) qk (t)vertical bar x(sigma) (t)vertical bar (alpha k-1) x(sigma) (t) = f (t); t is an element of [t(0), infinity)(T), where the nonlinearities satisfy 0 < alpha(1) < ... < alpha(m) < 1 < alpha(m+1) < ... < alpha(n) < 2. No sign restrictions are imposed on the potentials qk, k = 1, 2, ... , n, and the forcing term f. The inequalities obtained generalize and compliment the existing results for the special cases of this equation in the literature.