Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 35
    Citation - Scopus: 43
    Lyapunov-Type Inequalities for Mixed Non-Linear Forced Differential Equations Within Conformable Derivatives
    (Springer, 2018) Abdeljawad, Thabet; Agarwal, Ravi P.; Alzabut, Jehad; Jarad, Fahd; Ozbekler, Abdullah
    We state and prove new generalized Lyapunov-type and Hartman-type inequalities fora conformable boundary value problem of order alpha is an element of (1,2] with mixed non-linearities of the form ((T alpha X)-X-a)(t) + r(1)(t)vertical bar X(t)vertical bar(eta-1) X(t) + r(2)(t)vertical bar x(t)vertical bar(delta-1) X(t) = g(t), t is an element of (a, b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r(1), r(2), and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0 < eta < 1 < delta < 2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative T-alpha(a) is replaced by a sequential conformable derivative T-alpha(a) circle T-alpha(a), alpha is an element of (1/2,1]. The potential functions r(1), r(2) as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
  • Article
    Citation - Scopus: 3
    De La Vallee Poussin Inequality for Impulsive Differential Equations
    (Walter de Gruyter Gmbh, 2021) Akgol, Sibel Dogru; Ozbekler, Abdullah
    The de la Vallee Poussin inequality is a handy tool for the investigation of disconjugacy, and hence, for the oscillation/nonoscillation of differential equations. The results in this paper are extensions of former those of Hartman and Wintner [Quart. Appl. Math. 13 (1955), 330-332] to the impulsive differential equations. Although the inequality first appeared in such an early date for ordinary differential equations, its improved version for differential equations under impulse effect never has been occurred in the literature. In the present study, first, we state and prove a de la Vallee Poussin inequality for impulsive differential equations, then we give some corollaries on disconjugacy. We also mention some open problems and finally, present some examples that support our findings. (C) 2021 Mathematical Institute Slovak Academy of Sciences