Search Results

Now showing 1 - 9 of 9
  • Article
    Citation - WoS: 10
    Citation - Scopus: 12
    Detection of Viruses by Probe-Gated Silica Nanoparticles Directly From Swab Samples
    (Elsevier, 2022) Tuna, Bilge Guvenc; Durdabak, Dilara Buse; Ercan, Meltem Kazak; Dogan, Soner; Kavruk, Murat; Dursun, Ali Dogan; Ozalp, Veli Cengiz
    Viral infection has been one of the major health issues for human life. The real-time reverse transcription polymerase chain reaction (RT-PCR)-based detection has primarily been used for virus detection as a highly reliable procedure. However, it is a relatively long and multi-stage process. In addition, required skilled personnel and complex instrumentation presents difficulties in large scale monitoring efforts. Therefore, we report here a direct and fast detection method for CoV-2 genome as applied in the nose-throat swab samples without any further processing. The detection principle is based on fluorescein-loaded mesoporous silica nanoparticles capped by specific gene sequences probes immobilized on the surface of the nanoparticles. Upon hybridization with the target viral genome, the fluorescein molecules were released from the mesopores. Testing with synthetic oligonucleotides, the NSP12 gene-based detection resulted in a strong signal. Target detection time could be optimized to 15 min and the limit of detection was 1.4 RFU with 84% sensitivity with clinical samples (n = 43).
  • Article
    Citation - WoS: 24
    Citation - Scopus: 28
    High-Efficiency Application of Cts-Co Nps Mimicking Peroxidase Enzyme on Tmb(ox)
    (Pergamon-elsevier Science Ltd, 2022) Altuner, Elif Esra; Ozalp, Veli Cengiz; Yilmaz, M. Deniz; Bekmezci, Muhammed; Sen, Fatih
    In this study, analytical studies of Chitosan-Cobalt(II) (CTS-Co(II)) nanoparticles (CTS - Co NPs) by mimicking horseradish peroxidase (HRP) were evaluated. In the applications, it was observed that CTS-Co NPs 3,3 ' 5,5 ' tetramethylbenzidine (TMB) oxidized in the presence of hydrogen peroxide (H2O2). The required CTS-Co NPs were synthesized at 50 degrees C in 30 min and characterized using Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Xray photon spectroscopy (XPS) was done. CTS-Co NPs were studied to develop a selective TMB biosensor on TMB (ox) substrate. The synthesized CTS-Co NPs formed a catalytic reaction with 30% 0.2 mM H2O2 on 0.2 M TMB substrate. After the catalytic reaction, sensitive signals were obtained from the desired biosensor. Electrochemical measurements were taken as low limit of 10 mg and a high limit of 20 mg for the determination of CTSCo NPs to TMB(ox). In the microplate study; The sensors were applied on 1.5 mu g and 3 mu g CTS-Co NPs TMB(ox) substrate, respectively. CTS- Co NPs; for TMB(ox) determination, optical density (OD) measurement was taken as a low limit of 1.5 mu g and a high limit of 3 mu g. Electrochemical applications of particles and microplate reader results were compared with horseradish peroxidase (HRP) enzyme for sensor properties. According to the data obtained, it was observed that it behaved similarly to the CTS-Co NPs peroxidase enzyme. This work presents innovations for nanoparticle extraction and sensor study from chitosan and other naturally sourced polymers.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 36
    Development of Electrochemical Aptasensors Detecting Phosphate Ions on Tmb Substrate With Epoxy-Based Mesoporous Silica Nanoparticles
    (Pergamon-elsevier Science Ltd, 2022) Altuner, Elif Esra; Ozalp, Veli Cengiz; Yilmaz, M. Deniz; Sudagidan, Mert; Aygun, Aysenur; Acar, Elif Esma; Sen, Fatih
    This study, it is aimed to develop an electrochemical aptasensor that can detect phosphate ions using 3.3 & PRIME;5.5 & PRIME; tetramethylbenzidine (TMB). It is based on the principle of converting the binding affinity of the target molecule phosphate ion (PO43-) into an electrochemical signal with specific aptamer sequences for the aptasensor to be developed. The aptamer structure served as a gate for the TMB to be released and was used to trap the TMB molecule in mesoporous silica nanoparticles (MSNPs). The samples for this study were characterized by transmission electron spectroscopy (TEM), Brunner-Emmet-Teller, dynamic light scattering & electrophoretic light scattering, and induction coupled plasma atomic emission spectroscopy. According to TEM analysis, MSNPs have a morphologically hexagonal structure and an average size of 208 nm. In this study, palladium-carbon nano particles (Pd/C NPs) with catalytic reaction were used as an alternative to the biologically used horseradish peroxidase (HRP) enzyme for the release of TMB in the presence of phosphate ions. The limit of detection (LOD) was calculated as 0.983 mu M, the limit of determination (LOQ) was calculated as 3.276 mu M, and the dynamic linear phosphate range was found to be 50-1000 mu M. The most important advantage of this bio-based aptasensor assembly is that it does not contain molecules such as a protein that cannot be stored for a long time at room temperature, so its shelf life is very long compared to similar systems developed with antibodies. The proposed sensor shows good recovery in phosphate ion detection and is considered to have great potential among electrochemical sensors.
  • Article
    Citation - Scopus: 1
    An Investigation on the Dna Binding Activities of Melamine, Cyanuric Acid and Uric Acid
    (Editura Acad Romane, 2021) Senol, Ali; Devrim, Alparslan Kadir; Sudagidan, Mert; Ozalp, Veli Cengiz
    Melamine can be added to various foods such as milk, milk powder, baby food, pet, and livestock feed for cheating purposes due to its high nitrogen content. Regarding its usage in food products, there is a need to investigate its possible interactions with DNA. Thus, this study aimed to investigate the interactions of melamine and its metabolized products, cyanuric acid and uric acid with genomic DNA, isolated from eukaryotic (calf thymus) and prokaryotic (Staphylococcus aureus) sources. UV-absorbance spectrophotometry, fluorescence spectrophotometry, and agarose gel electrophoresis techniques were used to evaluate these interactions. The five different concentrations of melamine, cyanuric acid, and uric acid were incubated with fixed DNA concentration and it was determined that the test compounds interacted with the DNA molecules. The data obtained by UV-absorbance and fluorescence spectrophotometry techniques revealed an increase in wave peaks observed with the increasing substance concentration. After the obtained data of the aforementioned techniques were evaluated together, it was concluded that melamine, cyanuric acid, and uric acid bonded to the eukaryotic and prokaryotic genomic DNA materials via groove binding.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 18
    Metagenomic and Chemical Analysis of Tarhana During Traditional Fermentation Process
    (Elsevier, 2021) Soyucok, Ali; Yurt, Mediha Nur Zafer; Altunbas, Osman; Ozalp, Veli Cengiz; Sudagidan, Mert
    Tarhana is one of the favourable traditional fermented food consumed as a soup. Different flour, vegetables, spices and yogurt are main constituents and they compose of microbiota of Tarhana. In this study, bacterial communities in each fermentation process and in their constituents were identified by metagenomic analysis. Also, chemical properties (pH, acidity, salt content and dry matter) were analysed in each step. The results showed that in the dough formation, mainly Lactobacillus, Bacillus, Enterococcus and Streptococcus were present and after Day 4, Clostridium and Bacillus became dominant, after drying Clostridium disappeared and in the final product bacterial communities from Bacillus and Streptococcus genus were observed. Chemical analysis showed that pH decreased from 4.94 to 4.46, acidity increased by time at the beginning of fermentation from 7.5% to 22.5% in first 6 days period, then, became stable at 14% in drying process. Salt content increased by time from 1.74 to 3.08 g salt/100 g Tarhana in first 8 days and in drying process salt content was recorded as 2.81-2.90 and dry matter was obtained as 94 g dry matter/100 g Tarhana in the final product. This study elucidated the effects of ingredients, raw materials and how microbiota and chemical properties changes during fermentation steps of home-made traditional Tarhana production and thus preparation methods could be developed to obtain standardized Tarhana products for industrial production in future.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 19
    Bacterial Surface, Biofilm and Virulence Properties of listeriamonocytogenes Strains Isolated From Smoked Salmon and Fish Food Contact Surfaces
    (Elsevier, 2021) Sudagidan, Mert; Ozalp, Veli Cengiz; Ozturk, Orhan; Yurt, Mediha Nur Zafer; Yavuz, Orhan; Tasbasi, Behiye Busra; Aydin, Ali
    Biofilm formation is one of the defense mechanisms of bacteria against disinfectants and antimicrobials. The aim of this study was to determine biofilm-forming L.monocytogenes from fish processing and salmon surfaces. Biofilm formation at 15, 25, 37, and 40 degrees C from 1 to 6-days period, adhesion to glass, polypropylene and stainless-steel surfaces, bacterial surface charge and hydrophobicity was determined. Adhesion behavior of the strains was evaluated using Surface Plasmon Resonance (SPR) technique. Totally 32 L.monocytogenes strains belonging to serogroups IIa (n:17), IIc(n:14) and IVb(n:1) were detected from 1320 swabs and 16 smoked salmons. Biofilm formation tests revealed that 21 strains form biofilm on microplate by increasing time and temperature. Although all strains strongly formed biofilm on glass surfaces, two strains slightly adhered polypropylene surfaces. High surface roughness of stainless-steel FeCrNi alloy (Ra = 4.15 nm) and CoCrMo alloy (Ra = 10.75 nm) increased biofilm formation of L.monocytogenes on stainless-steel surfaces. Zeta potential results showed that non-biofilm formers were more negatively charged after 6-days and hydrophobicity couldn't give a distinct distribution among biofilm formers and non-formers. SPR analysis method was evaluated to distinguish biofilm formers to adhere SPR gold chip surfaces. PCR results revealed that all strains were positive for hylA, iap, actA, plcA, plcB, fri, flaA, inlA, inlB, inlC, inlJ, and lmo1386 genes. Additionally, all strains were susceptible to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole. Biofilm-forming, virulence properties of L. monocytogenes strains isolated from fish processing surfaces and smoked salmons were evaluated and SPR was used to differentiate biofilm formers as a sensitive technique for biofilm studies.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 8
    Aptamer-Based Magnetic Isolation and Specific Detection System for listeria Monocytogenes from Food Samples
    (Elsevier, 2024) Bayramoglu, Gulay; Ozalp, Veli Cengiz; Arica, Mehmet Yakup
    In this work, an aptamer-based magnetic system was designed for specific and rapid detection of Listeria monocytogenes in food samples. To prepare the selective magnetic system against the target bacterium, firstly, magnetic particles (Fe3O4) were coated with two hydrophilic polymer layers. The specific aptamer immobilized magnetic system efficiently captured L. monocytogenes cells in a competitive response time of approximately 10 min. The magnetic aptamer detection system was very specific to L. monocytogenes and had high selective, up to 97.6 % compared to the Listeria species (Listeria ivanovii, Listeria innocua, and Listeria seeligeri) and other bacteria species Escherichia coli, Staphylococcus aureus, and Basillus subtilus. The isolation and detection of L. monocytogenes from food samples using the presented method are fast and reliable. Moreover, another significant factor to be contemplated is the use of a few chemicals for detection, reducing the cost of analysis, and the results can be obtained within 18 h.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 6
    Bacterial and Fungal Microbiota of Mould-Ripened Cheese Produced in Konya
    (Wiley, 2023) Yurt, Mediha Nur Zafer; Omeroglu, Esra Ersoy; Tasbasi, Behiye Busra; Acar, Elif Esma; Altunbas, Osman; Ozalp, Veli Cengiz; Sudagidan, Mert
    Bacterial and fungal diversities of 24 mould-ripened cheeses originating from Konya-Turkiye were examined by metagenomic analysis. Firmicutes phylum, Enterococcus, Clostridium sensu stricto and Lactobacillus (Levilactobacillus) genera were the dominant bacteria. Ascomycota phylum and Penicillium and Pichia genera and Penicillium roqueforti and Pichia membranifaciens species were dominant fungi. Enterococcus faecium (n = 30) and Enterococcus faecalis (n = 6) were identified, and all strains were susceptible to penicillin, ampicillin, vancomycin, teicoplanin, chloramphenicol and linezolid. The highest resistance (n = 14) was against rifampin. Tetracycline resistance was determined in two strains. Biofilm-forming ability was found in nine E. faecium and 1 E. faecalis. E. faecium strains revealed 40-88.9%, and E. faecalis showed 59.2-100% homology by pulsed field gel electrophoresis.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 2
    Targeted Multidrug Delivery Systems To Kill Antibiotic-Resistant Staphylococcus Aureus
    (Elsevier, 2023) Ozalp, Veli Cengiz; Ucak, Samet; Dursun, Ali D.; Sudagidan, Mert; Icin, Oyku; Vakifahmetoglu, Cekdar; Gurlo, Aleksander
    Different ordered mesoporous silica (OMS) nanoparticles, ranging from regular COK-12 to COK-12 modified in terms of pore shape and size, have been employed as standard drug carriers for the controlled adsorption and release of drug molecules in comparison to well-known OMS SBA-15 and MCM-41. The cytotoxicity analysis demonstrated that regular COK-12 particles were less harmful to mammalian cultured cells, causing lower apoptosis induction than modified COK-12, MCM-41, and SBA-15 particles.Thus, regular COK-12 was further used to prepare a dual antibiotic-loaded drug delivery material, followed by surface functionalization with Staphylococcus aureus-specific aptamers for targeting. The results demonstrated that the joint loading of lysozyme and vancomycin in regular COK-12 improved the ability of the antibiotic treatments to kill methicillin-resistant Staphylococcus strains via aptamer targeting. The minimum inhibitory concentration (MIC) values decreased 4.1-fold and 12-fold compared to the non-targeted use of the antimicrobial agents in homogeneous solutions for vancomycin and lysozyme, respectively, clearly demonstrating the high potential of COK-12 to be used as a carrier in multidrug therapy.