4 results
Search Results
Now showing 1 - 4 of 4
Article An Elaboration of the Cai-Xu Result on (p, q)-integers(Springer Heidelberg, 2020) Ostrovska, SofiyaThe investigation of the (p, q)-Bernstein operators put forth the problem of finding the conditions when a sequence of (p, q)-integers tends to infinity. This is crucial for justifying the convergence results pertaining to the (p, q)-operators. Recently, Cai and Xu found a necessary and sufficient condition on sequences {p(n)} and {q(n)}, where 0 < q(n) < p(n) <= 1, to guarantee that a sequence of (p(n), q(n))-integers tends to infinity. This article presents an elaborated version of their result.Article Citation - WoS: 2Citation - Scopus: 2The Impact of the Limit q-durrmeyer Operator on Continuous Functions(Springer Heidelberg, 2024) Yilmaz, Ovgu Gurel; Ostrovska, Sofiya; Turan, MehmetThe limit q-Durrmeyer operator, D-infinity,D-q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172-178, 2008) during a study of q-analogues for the Bernstein-Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of D-infinity,D-q. The interrelation between the analytic properties of a function f and the rate of growth for D(infinity,q)f are established, and the sharpness of the obtained results are demonstrated.Article Citation - WoS: 15Citation - Scopus: 18The Sharpness of Convergence Results for q-bernstein Polynomials in The Case q > 1(Springer Heidelberg, 2008) Ostrovska, SofiyaDue to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.Article Norming Subspaces Isomorphic to l1(Springer Heidelberg, 2015) Ostrovska, SofiyaNorming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that the dual of a Banach space X contains a norming subspace isomorphic to l(1) provided that the following two conditions are satisfied: (1) X* contains a subspace isomorphic to l(1); and (2) X* contains a separable norming subspace.

