Norming Subspaces Isomorphic to <i>l</i><sub>1</sub>

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Events

Abstract

Norming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that the dual of a Banach space X contains a norming subspace isomorphic to l(1) provided that the following two conditions are satisfied: (1) X* contains a subspace isomorphic to l(1); and (2) X* contains a separable norming subspace.

Description

Keywords

Banach space, norming subspace, dual space, weak* convergence, free ultrafilter

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q4

Source

Volume

31

Issue

5

Start Page

767

End Page

771

Collections