Norming Subspaces Isomorphic to <i>l</i><sub>1</sub>

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:32:40Z
dc.date.available2024-07-05T14:32:40Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractNorming subspaces are studied widely in the duality theory of Banach spaces. These subspaces are applied to the Borel and Baire classifications of the inverse operators. The main result of this article asserts that the dual of a Banach space X contains a norming subspace isomorphic to l(1) provided that the following two conditions are satisfied: (1) X* contains a subspace isomorphic to l(1); and (2) X* contains a separable norming subspace.en_US
dc.identifier.citationcount0
dc.identifier.doi10.1007/s10114-015-4123-x
dc.identifier.endpage771en_US
dc.identifier.issn1439-8516
dc.identifier.issn1439-7617
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84928124715
dc.identifier.scopusqualityQ4
dc.identifier.startpage767en_US
dc.identifier.urihttps://doi.org/10.1007/s10114-015-4123-x
dc.identifier.urihttps://hdl.handle.net/20.500.14411/837
dc.identifier.volume31en_US
dc.identifier.wosWOS:000352612800003
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectBanach spaceen_US
dc.subjectnorming subspaceen_US
dc.subjectdual spaceen_US
dc.subjectweak* convergenceen_US
dc.subjectfree ultrafilteren_US
dc.titleNorming Subspaces Isomorphic to <i>l</i><sub>1</sub>en_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections