Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 38
    Citation - Scopus: 39
    Enhancing Machining Efficiency of Ti-6al Through Multi-Axial Ultrasonic Vibration-Assisted Machining and Hybrid Nanofluid Minimum Quantity Lubrication
    (Elsevier Sci Ltd, 2024) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin
    Ti-6Al-4V offers a balance of good strength with lightweight properties. Yet, Ti-6Al-4V poses machining challenges, including low thermal conductivity, chemical adhesion to cutting tools, and chip removal difficulties. To improve machining efficiency, Ultrasonic Vibration-Assisted Machining (UVAM) has emerged as a promising approach. UVAM has demonstrated reduced tool wear, cutting forces, and improved surface quality compared to Conventional Machining (CM). Additionally, Minimum Quantity Lubrication (MQL) methods offer sustainable coolant alternatives, with recent research focusing on Nanofluid-MQL (NMQL) and Hybrid Nanofluid-MQL (HNMQL) for enhanced performance. Although there exists a body of literature showcasing the promising effects of UVAM and MQL methods individually, comprehensive investigations into the synergistic effects of these methodologies remain limited. This study addresses these critical research gaps by conducting a systematic examination of combined application of multi-axial UVAM and HNMQL. Specifically, it delves into the comparison of different vibration directions within UVAM, evaluates the effectiveness of UVAM when combined with cutting fluids incorporating Al2O3 and CuO nanoparticles in NMQLs and HNMQLs, and contrasts these novel approaches with conventional machining methods. The study unfolds in three distinct stages. The first stage examines the ultrasonic cutting mechanism and its combined application with the MQL technique. In the second stage, the study investigates the physical properties of the cutting fluids, including contact angle and surface tension. The final stage encompasses slot milling operations, where an array of parameters such as cutting forces, surface roughness, surface topography, surface texture, and the occurrence of burr formations are rigorously analyzed. The results demonstrate that the combination of multi-axial UVAM with HNMQL yields substantial advantages over traditional machining methods. Notably, it leads to a remarkable reduction in cutting forces (up to 37.6 %) and surface roughness (up to 37.4 %). Additionally, this combination engenders the production of highly homogeneous and uniform surface textures, characterized by minimal surface defects and a significantly diminished occurrence of burr formations. These findings underscore the potential of multi-axial UVAM combined with HNMQL as a promising approach in enhancing the machining of Ti-6Al-4V, thus offering a pathway to enhance the efficiency and precision of aerospace component manufacturing processes.
  • Article
    Enhancing Machining Efficiency and Sustainability of Ti-6Al-4V Through Minimum Quantity Lubrication With Ester-Based Oils
    (Taylor & Francis Ltd, 2025) Namlu, Ramazan Hakki; Kavut, Kuebra; Tom, Hanife Gulen
    Ti-6Al-4 V is known as difficult-to-cut due to its low thermal conductivity and high chemical reactivity. While cutting fluids aid lubrication and reduce friction, Conventional Cutting Fluids (CCF) have high consumption, limited efficiency gains and negative environmental and health effects. Therefore, there is an ongoing search for more sustainable alternatives to CCF that do not adversely affect machining performance. Minimum Quantity Lubrication (MQL), which delivers compressed air - oil aerosol, has emerged as a promising solution by drastically reducing fluid use and associated risks. Selecting the right MQL fluid is key to optimising machining performance. This study evaluates MQL fluids based on polyol and polymeric esters for Ti-6Al-4 V machining and compares their performance with CCF. Cutting forces, surface roughness and topography are examined. Results show that MQL reduces cutting forces up to 21.7% and surface roughness up to 57.6% compared to CCF, with more uniform surface topography. Among MQL oils, polymeric esters perform better than polyol esters, with a reduction in cutting force up to 14.6% and surface roughness up to 47.7%. High viscosity indexed polymeric esters showed the best overall performance due to their thermal stability. Moreover, according to the sustainability assessment analysis polymeric esters were identified as the most sustainable option.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 25
    Machining Performance and Sustainability Analysis of Al2o3< Hybrid Nanofluid Mql Application for Milling of Ti-6al
    (Taylor & Francis inc, 2024) Lotfi, Bahram; Namlu, Ramazan Hakki; Kilic, S. Engin
    Machining of Ti-6Al-4V presents challenges due to its low thermal conductivity, and conventional cutting fluids (CCF) are inadequate in providing a productive and sustainable solution. This study aims to achieve more sustainable and productive machining of Ti-6Al-4V by utilizing Al2O3 and CuO-added Nanofluid Minimum Quantity Lubrication (NMQL) individually and in hybrid form with different concentrations. A comparison is made with pure-MQL, CCF and dry conditions. The study consists of three stages. In the first stage, the physical properties of the coolants, like contact angle and surface tension, are investigated. The second stage involves slot milling operations, and various outputs including cutting forces, surface roughness, surface topography, surface finish, and subsurface microhardness are analyzed. In the last stage, a sustainability analysis is conducted based on the Pugh Matrix Approach. The results indicate that Al2O3-NMQL exhibits lower contact angles and surface tensions compared to other conditions. Furthermore, HNMQL applications result in lower cutting forces (up to 46.5%), surface roughness (up to 61.2%), and microhardness (up to 6.6%), while yielding better surface finish and topography compared to CCF. The sustainability analysis demonstrates that HNMQL application is the most suitable option for achieving sustainable machining of Ti-6Al-4V.
  • Article
    Citation - WoS: 26
    Citation - Scopus: 31
    An Experimental Investigation on the Effects of Combined Application of Ultrasonic Assisted Milling (uam) and Minimum Quantity Lubrication (mql) on Cutting Forces and Surface Roughness of Ti-6al
    (Taylor & Francis inc, 2021) Namlu, Ramazan Hakki; Sadigh, Bahram Lotfi; Kilic, Sadik Engin
    Ti-6Al-4V is widely used in aerospace, medical and defense industries where materials with superior characteristics are needed. However, Ti-6Al-4V is categorized as a difficult-to-cut material, and machining of this alloy is highly challenging. Ultrasonic Assisted Milling (UAM) is a quite recent method to facilitate the machining of difficult-to-cut materials. This method has numerous advantages over the Conventional Milling (CM) method, such as reduced cutting forces and increased surface quality. Besides, Minimum Quantity Lubrication (MQL) is an alternative cooling method to enhance the process efficiency with respect to conventional cooling methods. Cutting force and surface roughness are essential measures to evaluate the cutting performance of a machining process. However, the simultaneous effects of implementing MQL and ultrasonic vibrations in milling operations are not much researched yet. In this study, the combined effects of UAM and MQL on cutting forces and surface roughness during the machining of Ti-6AL-4V are investigated. Results show that the combination of MQL and UAM enhances the cutting forces in rough cutting operations and the surface roughness in both finish and rough cutting operations significantly compared to conventional processes. Consequently, it is concluded that simultaneous implementation of UAM and MQL enhances overall cutting performance in end-milling operation of Ti-6Al-4V.