2 results
Search Results
Now showing 1 - 2 of 2
Doctoral Thesis Yiyecek içecek sektörü için çok ürünlü, çok aşamalı üretim planlamasına yönelik model ve karar destek sistemi önerisi(2016) Tirkeş, Güzin; Çelebi, Neşe; Koyuncu, MuratGıda ve içecek endüstrisinde; üretim planlama kararı güvenilir bir talep tahminine bağlıdır. Bu üretim alanlarında -özellikle hammaddelerin bozulabilir olduğu düşünüldüğünde- taleplerin zamanlamasını tahmin etmek; üretimi planlamak ve müşteri gereksinimlerini karşılamak için çok önemlidir. Literatürde gıda ve içecek endüstrisinde talep tahmini yapmak için, otoregresif hareketli ortalama (ARMA), otoregresif entegre hareketli ortalama (ARIMA), doğrusal olmayan ARMA modelleri, Holt-Winters metodları, yapay sinir ağları (ANN), genetik algoritmalar gibi çeşitli istatistiksel modellerin denendiği görülmektedir. Yapılacak tahminler için kullanılacak model verilerin karakteristiğine -'eğilim' veya 'mevsimsellik' özelliklerine- bağlıdır. Bu çalışmada 'gerçel zamanlı, çok aşamalı ve çok hatlı' bir üretim sürdürürken, hem toptan hem de perakende satış yapan bir reçel-şerbet üretim tesisi ele alınmaktadır. Tesisin; kapasite sınırlamaları ve taleplerin belirsizliği gibi sorunların varlığında oluşan üretim zamanlaması problemini çözebilmek için 'zaman serileri analizi' temelli bir talep tahmini yaklaşım modeli kurulmuştur ve bu çalışmada bu model tanıtılmaktadır. Uzun dönem talep tahmini için kullanılan 'zaman serileri modeli işletmenin iki yıllık satış verilerinden elde edilen aylık satış bilgilerinden oluşturulmuştur. Modelde Holt ve Winters'ın üçlü üstel düzleştirme ve mevsimsel düzeltme metotları kullanılarak 2015 yılı için talep tahmini yapılmıştır. Uygulama, gıda ve içecek sektöründe mevsimsel belirsizlikleri ele alabilen ilk çalışmalardan biridir. Modelin tutarlılığında hata ölçütü olarak ortalama mutlak yüzdesel hata (MAPE) kriteri ele alınmıştır. Talep tahmin modelini kurduktan sonra, envanter planlama modülünü de içeren, üretim planlama ve zamanlama modeli olarak karışık tam sayılı programlama modeli kullanılmıştır. Geliştirilen modelin 'belirsizlik' içeren durumlara da kolaylıkla uyum gösterebilir olması, modeli hem şu anki problemin çözümü hem de gelecekteki çalışmalar için en uygun seçenek kılmaktadır. Çalışmanın son kısmında, uç noktalara varan değişken taleplerin olduğu durumlarda kullanıcılara yardımcı olabilecek bir karar destek sistemi önerilmiştir.Conference Object Fuzzy Semantic Web Architecture for Activity Detection in Wireless Multimedia Sensor Network Applications(Atlantis Press, 2019) Ozdin, Ali Nail; Yazici, Adnan; Koyuncu, Murat; Information Systems EngineeringThis study aims to increase the reliability of activity detection in Wireless Multimedia Sensor Networks (WMSNs) by using Semantic Web technologies extended with fuzzy logic. The proposed approach consists of three layers: the sensor layer, the data layer, and the Semantic Web layer. The sensor layer comprises a WMSN comprising sensor nodes with multimedia and scalar sensors. The data layer retrieves and stores data from the sink of WMSN. At the top of the architecture, there is a semantic web layer that includes a semantic web application server, a fuzzy reasoning engine, and a semantic knowledge base. When a new entity is detected at the sensor layer, the associated data produced by the sensors and the sink are collected in the data layer and transmitted to the semantic web application server where the data is converted into subjects, predicates, and objects, according to the ontology conceived and recorded in RDF format. Then, the fuzzy reasoning engine is automatically activated and fuzzy rules are executed to determine if there is an activity in the monitored area. Our implementation confirms that extended semantic Web technologies with fuzzy logic can have a significant impact on the detection of activities in WMSNs.

