Search Results

Now showing 1 - 2 of 2
  • Conference Object
    Citation - WoS: 18
    Citation - Scopus: 23
    An Experimental Study on Surface Quality of Al6061-T6 in Ultrasonic Vibration-Assisted Milling with Minimum Quantity Lubrication
    (Elsevier Science BV, 2022) Namlu, Ramazan Hakki; Yilmaz, Okan Deniz; Lotfisadigh, Bahram; Kilic, S. Engin
    Al6061-T6 is frequently used in the automotive and aerospace industries, where milling is an essential process, due to its high strength-to-weight ratio. In order to achieve improved surface quality in milling, Ultrasonic Vibration-Assisted Milling (UVAM) has been introduced recently. Besides, Minimum Quantity Lubrication (MQL) is another advanced method to enhance the surface properties of the cutting by improving the coolant performance. However, the effects of simultaneous implementation of UVAM and MQL methods has not yet been studied sufficiently. This paper investigates the effects of applying UVAM in tandem with MQL in cutting of Al6061-T6. The results showed that surface quality enhanced with this combination. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    EFFECT OF THE MQL TECHNIQUE ON CUTTING FORCE AND SURFACE QUALITY DURING THE SLOT MILLING OF TITANIUM ALLOY
    (inst Za Kovinske Materiale I in Tehnologie, 2022) Osman, Khaled Ali; Yilmaz, Volkan; Unver, Hakki Ozgur; Seker, Ulvi; Kilic, S. Engin
    In this study, the effects of four control parameters, i.e., the cutting speed (v(c)), feed per tooth (f), depth of cut (a(p)), and flow rate of the cutting fluid (Q), on the surface roughness (R-a) and cutting force (F-c) were investigated in the slot milling of titanium alloys (Ti-6A1-4V). The effects of the control parameters were determined by a statistical analysis. In addition, RSM models for R-a and F-c during machining under three cooling/lubrication conditions, i.e., dry, flood, and minimum quantity lubrication (MQL), were obtained. The results revealed that both R-a and F-c are sensitive to changes in f, a(p) and Q. It was found that the MQL condition generates lower values of R-a where the surface roughness value is 0.227 mu m. By contrast. F-c values under the MQL condition were close to those of the flood condition and at times even better. The machining performance at a cutting-fluid flow rate of 36 mL/h under the MQL condition was found to be the best under certain machining conditions. MQL was found to be an effective alternative technique for conventional conditions when machining Ti-6Al-4V.