Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Derin öğrenme ile orman yangını tespiti
    (2024) Özel, Berk; Khan, Muhammad Umer
    Yangın algılama sistemleri can güvenliği ve maddi hasarın en aza indirilmesi açısından kritik öneme sahiptir. Bu tür sistemlerin hayati önem taşıdığı alanlardan biri de orman yangınlarıdır. Son yıllarda büyüklük, süre ve tahribat açısından rekor sayıda orman yangını yaşandı. Duman veya ısı sensörleri gibi geleneksel yangın algılama yöntemlerinin sınırlamaları vardır ve bu da ileri teknolojilere dayalı yenilikçi yaklaşımların ortaya çıkmasına neden olur. Bu tez, orman yangını tespiti için bir derin öğrenme modeli olan ResNet ile birlikte Batch-Instance Normalizasyonunun uygulanmasını incelemektedir. Çalışma, Batch-Instance Normalizasyonunun performansını diğer normalleştirme yaklaşımlarıyla karşılaştırmaktadır. Bu çalışmada modelin eğitimi için orman yangını veri seti kullanılmıştır. Bu veri seti 4609 görsel içermektedir. Bu görseller 2120 Yangın, 2499 yangın içermeyen görselden oluşmaktadır. ResNet modeli sekiz farklı optimize edici ile test edilmiş ve en iyi sonuçları veren ile eğitilmiştir. Deneyler, normalizasyon tekniklerinin ve optimize edicilerin yangın tespitinin doğruluğu üzerindeki etkisini değerlendirmektedir. Sonuçlar, tek üstel düzeltmeyle Batch-Instance Normalizasyonunun modelin doğruluğunu önemli ölçüde artırdığını göstermektedir. Deneyde model, 96.14% F1 skoruna, 96.56% doğruluğa ve 99.49% kesinlik değerlerine ulaşmıştır. Diğer yaklaşımlardan minimum %1 doğruluk farkı, %0,6 F1 skor farkı, %1,05 kesinlik farkı elde edilmiştir. Derin öğrenmenin yeteneklerini Batch-Instance Normalizasyonunuyla birleştirmek, orman yangını tespiti için umut verici ve etkili bir çözüm ortaya koydu.
  • Master Thesis
    Sağlık Tahmininde Optimizasyon Tekniklerinin Kullanılması
    (2020) Malık, Muhammad Sufyan; Yazıcı, Ali; Yazıcı, Ali; Yazıcı, Ali; Khan, Muhammad Umer; Software Engineering; Software Engineering
    Günümüz dünyasında modern teknolojinin kullanımı tıp bilimi alanında birçok gelişme sağlamıştır. Yine de, tüm ilerlemelerle birlikte, çoğu hastalığın tanı ve tedavisi zor bir görev olarak kabul edilmektedir. Diyabet rahatsızlığı, erken evrelerinde tanıyı araştırmak yerine semptomlarla mücadele için daha fazla çalışılmıştır. İnsülin ve insülin emisyon eksikliğine direnç kombinasyonu tip-2 diyabet üretir. Tip-2 yüksek nüfuzludur ve hala artmaktadır. Bununla birlikte, DMT2'nin tanımlanması bir ikilemdir. DMT2 erken bir aşamada tanımlanabilirse, daha az önleyici tedbirler gerekli olacaktır ve kişi yine de sağlıklı ve kaygısız bir yaşam sürdürebilir. Veri madenciliği teknikleri kullanan birçok sağlık kehanet sistemi yerleşik sağlık segmentleri vardır. Optimizasyon teknikleri de daha kesin ve verimli sonuçlar sağlayabilir. Bu çalışmada, sınıflandırma doğruluğunu ve SVM, DT, LR gibi mevcut sınıflandırıcılar arasındaki karşılaştırmayı bulmak için dışbükey optimizasyonda En Küçük kare, Karesel programlama ve Lagrangian Yöntemi kullanılmıştır. Bu araştırma, optimizasyon tekniklerinin sağlık hastalığını öngörmek veya teşhis etmek için kullanılabileceğini ve diğer sınıflandırıcılara göre daha iyi sonuçlar verebileceğini göstermektedir. Anahtar Kelimeler: Makine Öğrenmesi, Optimizasyon Teknikleri, Doğrusal Programlama, En Küçük Kareler Yöntemi, İkinci Derece Programlama, Lagrange Yöntemi, Şeker hastalığı