Sağlık Tahmininde Optimizasyon Tekniklerinin Kullanılması

Loading...
Thumbnail Image

Date

2020

Authors

Malık, Muhammad Sufyan
Yazıcı, Ali
Yazıcı, Ali
Yazıcı, Ali

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Günümüz dünyasında modern teknolojinin kullanımı tıp bilimi alanında birçok gelişme sağlamıştır. Yine de, tüm ilerlemelerle birlikte, çoğu hastalığın tanı ve tedavisi zor bir görev olarak kabul edilmektedir. Diyabet rahatsızlığı, erken evrelerinde tanıyı araştırmak yerine semptomlarla mücadele için daha fazla çalışılmıştır. İnsülin ve insülin emisyon eksikliğine direnç kombinasyonu tip-2 diyabet üretir. Tip-2 yüksek nüfuzludur ve hala artmaktadır. Bununla birlikte, DMT2'nin tanımlanması bir ikilemdir. DMT2 erken bir aşamada tanımlanabilirse, daha az önleyici tedbirler gerekli olacaktır ve kişi yine de sağlıklı ve kaygısız bir yaşam sürdürebilir. Veri madenciliği teknikleri kullanan birçok sağlık kehanet sistemi yerleşik sağlık segmentleri vardır. Optimizasyon teknikleri de daha kesin ve verimli sonuçlar sağlayabilir. Bu çalışmada, sınıflandırma doğruluğunu ve SVM, DT, LR gibi mevcut sınıflandırıcılar arasındaki karşılaştırmayı bulmak için dışbükey optimizasyonda En Küçük kare, Karesel programlama ve Lagrangian Yöntemi kullanılmıştır. Bu araştırma, optimizasyon tekniklerinin sağlık hastalığını öngörmek veya teşhis etmek için kullanılabileceğini ve diğer sınıflandırıcılara göre daha iyi sonuçlar verebileceğini göstermektedir. Anahtar Kelimeler: Makine Öğrenmesi, Optimizasyon Teknikleri, Doğrusal Programlama, En Küçük Kareler Yöntemi, İkinci Derece Programlama, Lagrange Yöntemi, Şeker hastalığı
In today's world, the usage of modern technology has brought many advancements in the field of medical science. Still, with all the advancements, the diagnosis and treatment of most diseases are considered a challenging task. Diabetes ailment has been studied more for tackling the symptoms rather than investigating the diagnosis in its early stages. The combination of resistance to insulin and insulin emission deficiency produces type-2 diabetes. Diabetes Mellitus Type-2 is high penetrance and still increasing around. However, the identification of DMT2 is a dilemma. If the DMT2 can be identified at an early stage, fewer preventive measures would be required, and the person can still lead a healthy and carefree life. There exist many health prediction systems in health sectors using data mining techniques. Optimization techniques are capable of providing more precise and efficient results as well. In this research study, Least squares, Quadratic programming, and Lagrangian Method are used with convex optimization to find the classification accuracy and the comparison between existing classifiers such as SVM, DT, LR, and so forth. This research demonstrates that optimization techniques can be used to envisage or diagnose health disease and can provide better results compared to other classifiers. Keywords: Machine learning, Optimization Techniques, Linear Programming, Least Square, Quadratic Programming, Lagrangian Method, Diabetes Mellitus

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Diabetes mellitus, Doğrusal programlama, En küçük kareler yöntemi, Computer Engineering and Computer Science and Control, Diabetes mellitus, Kuadratik programlama, Linear programming, Least squares method, Lagrange çarpanı, Quadratic programming, Makine öğrenmesi, Lagrange multiplier, Machine learning, Optimizasyon, Optimization

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

77