2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 7Citation - Scopus: 7Surface Plasmon Resonance Aptasensor for Soluble Icam-1 Protein in Blood Samples(Royal Soc Chemistry, 2022) Dursun, Ali Dogan; Dogan, Soner; Kavruk, Murat; Tasbasi, B. Busra; Sudagidan, Mert; Yilmaz, M. Deniz; Tuna, Bilge G.Intercellular Adhesion Molecule-1 (ICAM-1) is considered to be a cancer biomarker in the assessment of metastatic potential in patients and an early indicator of atherosclerosis. A labelless biosensor based on the surface plasmon resonance (SPR) signal from the specific affinity interaction of an aptamer and a soluble ICAM-1 protein was developed for blood samples. The developed aptasensor provided real-time information on the concentration of the ICAM-1 protein in blood when integrated to a purification step based on a magnetic pull-down separation. The SPR aptasensor was highly specific with a limit of detection of 1.4/0.2 ng ml(-1), which was achieved through aptamer-functionalized silica-coated magnetic nanoparticles.Article Citation - WoS: 8Citation - Scopus: 7Fluorescent and Electrochemical Detection of Nuclease Activity Associated With streptococcus Pneumoniae Using Specific Oligonucleotide Probes(Royal Soc Chemistry, 2024) Goikoetxea, Garazi; Akhtar, Khadija-Tul Kubra; Prysiazhniuk, Alona; Borsa, Baris A.; Aldag, Mehmet Ersoy; Kavruk, Murat; Hernandez, Frank J.Streptococcus pneumoniae (S. pneumoniae) represents a significant pathogenic threat, often responsible for community-acquired pneumonia with potentially life-threatening consequences if left untreated. This underscores the pressing clinical need for rapid and accurate detection of this harmful bacteria. In this study, we report the screening and discovery of a novel biomarker for S. pneumoniae detection. We used S. pneumoniae nucleases as biomarker and we have identified a specific oligonucleotide that works as substrate. This biomarker relies on a specific nuclease activity found on the bacterial membrane, forming the basis for the development of both fluorescence and electrochemical biosensors. We observed an exceptionally high sensitivity in the performance of the electrochemical biosensor, detecting as low as 10(2) CFU mL(-1), whereas the fluorescence sensor demonstrated comparatively lower efficiency, with a detection limit of 10(6) CFU mL(-1). Moreover, the specificity studies have demonstrated the biosensors' remarkable capacity to identify S. pneumoniae from other pathogenic bacteria. Significantly, both biosensors have demonstrated the ability to identify S. pneumoniae cultured from clinical samples, providing compelling evidence of the potential clinical utility of this innovative detection system.

