16 results
Search Results
Now showing 1 - 10 of 16
Conference Object Citation - Scopus: 5Topic-Controlled Text Generation(Institute of Electrical and Electronics Engineers Inc., 2021) Çağlayan,C.; Karakaya,M.Today, the text generation subject in the field of Natural Language Processing (NLP) has gained a lot of importance. In particular, the quality of the text generated with the emergence of new transformer-based models has reached high levels. In this way, controllable text generation has become an important research area. There are various methods applied for controllable text generation, but since these methods are mostly applied on Recurrent Neural Network (RNN) based encoder decoder models, which were used frequently, studies using transformer-based models are few. Transformer-based models are very successful in long sequences thanks to their parallel working ability. This study aimed to generate Turkish reviews on the desired topics by using a transformer-based language model. We used the method of adding the topic information to the sequential input. We concatenated input token embedding and topic embedding (control) at each time step during the training. As a result, we were able to create Turkish reviews on the specified topics. © 2021 IEEEArticle Citation - WoS: 1Citation - Scopus: 2Ss-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Images(SPIE, 2021) Üstünkök,T.; Karakaya,M.Recent technological advancements in satellite imagery have increased the production of remotely sensed images. Therefore, developing efficient methods for annotating these images has gained popularity. Most of the current state-of-the-art methods are based on supervised machine learning techniques. We propose a method called semisupervised multi-label annotizer (SS-MLA) that adapts vector-quantized temporal associative memory to annotate remotely sensed images. One of the advantages of SS-MLA over the supervised methods is that it extracts features not only from the given sample but also from similar samples that are previously seen without using an explicit attention mechanism. Thus SS-MLA enhances the learning efficiency of the training process. We conduct extensive performance comparisons with five different methods in the literature over four datasets. The comparison results indicate the success of the proposed method over the existing ones: SS-MLA generates the best results in 7 out of 11 comparisons. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).Conference Object Yazilim Mühendisligi Egitiminde Bitirme Projesinin Yürütülmesinde İki Farkli Yöntemin Ögrenci Bakis Açisiyla Degerlendirilmesi(CEUR-WS, 2015) Karakaya,M.; Bostan,A.[No abstract available]Conference Object Deep Learning and Current Trends in Machine Learning(Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.Conference Object Deep Learning and Current Trends in Machine Learning(Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.Conference Object Citation - Scopus: 8Parking space occupancy detection using deep learning methods;(Institute of Electrical and Electronics Engineers Inc., 2018) Akinci,F.C.; Karakaya,M.This paper presents an approach for gathering information about the availabilty of the parking lots using Convoltional Neural Network (CNN) for image processing running on an embedded system. By using an eflicent neural network model, we made it possible to use a very low cost embedded system compared to the ones used in previous works on this topic. This efficient model's performance is compared to one of the models that proved its accuracy in image classification competitions. In these tests, we used datasets that has thousands of different images taken from parking lots in different light and weather conditions. © 2018 IEEE.Conference Object Citation - Scopus: 2Detecting Errors in Automatic Image Captioning by Deep Learning;(Institute of Electrical and Electronics Engineers Inc., 2021) Karakaya,M.Automatic tagging of images is an important researcli topic in tlie field of image processing. Anotlier area similar to this is the automatic generation of picture captions. In this study, a deep learning model that automatically tags the pictures is used to detect errors in image captions. As a result of the initial experiments, it is observed that the proposed system can find up to 80% of the errors in the image captions. © 2021 IEEEConference Object Citation - Scopus: 1An Iot Application for Locating Victims Aftermath of an Earthquake(Institute of Electrical and Electronics Engineers Inc., 2017) Karakaya,M.; Şengül,G.; Gökçay,E.This paper presents an Internet of Things (IoT) framework which is specially designed for assisting the research and rescue operations targeted to collapsed buildings aftermath of an earthquake. In general, an IoT network is used to collect and process data from different sources called things. According to the collected data, an IoT system can actuate different mechanisms to react the environment. In the problem at hand, we exploit the IoT capabilities to collect the data about the victims before the building collapses and when it falls down the collected data is processed to generate useful reports which will direct the search and rescue efforts. The proposed framework is tested by a pilot implementation with some simplifications. The initial results and experiences are promising. During the pilot implementation, we observed some issues which are addressed in the proposed IoT framework properly. © 2017 IEEE.Conference Object Yazilim Mühendisliʇi Eʇitiminde Bitirme Projesi Dersinin Öʇrenci Bakiş Açisiyla Deʇerlendirilmesi(CEUR-WS, 2013) Karakaya,M.; Bostan,A.[No abstract available]Conference Object Citation - Scopus: 2An Undergraduate Curriculum for Deep Learning(Institute of Electrical and Electronics Engineers Inc., 2018) Tirkes,G.; Ekin,C.C.; Engul,G.; Bostan,A.; Karakaya,M.Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. © 2018 IEEE.

