Ss-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Images

No Thumbnail Available

Date

2021

Authors

Üstünkök, Tolga
Karakaya, Kasım Murat

Journal Title

Journal ISSN

Volume Title

Publisher

SPIE

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Recent technological advancements in satellite imagery have increased the production of remotely sensed images. Therefore, developing efficient methods for annotating these images has gained popularity. Most of the current state-of-the-art methods are based on supervised machine learning techniques. We propose a method called semisupervised multi-label annotizer (SS-MLA) that adapts vector-quantized temporal associative memory to annotate remotely sensed images. One of the advantages of SS-MLA over the supervised methods is that it extracts features not only from the given sample but also from similar samples that are previously seen without using an explicit attention mechanism. Thus SS-MLA enhances the learning efficiency of the training process. We conduct extensive performance comparisons with five different methods in the literature over four datasets. The comparison results indicate the success of the proposed method over the existing ones: SS-MLA generates the best results in 7 out of 11 comparisons. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).

Description

Üstünkök, Tolga/0000-0002-0464-8803

Keywords

image classification, multi-label, remote sensing, semisupervised, vector-quantized temporal associative memory

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q4

Scopus Q

Q2

Source

Journal of Applied Remote Sensing

Volume

15

Issue

3

Start Page

End Page

Collections