Ss-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Images

dc.contributor.author Üstünkök,T.
dc.contributor.author Karakaya,M.
dc.contributor.other Software Engineering
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:19:50Z
dc.date.available 2024-07-05T15:19:50Z
dc.date.issued 2021
dc.description Üstünkök, Tolga/0000-0002-0464-8803 en_US
dc.description.abstract Recent technological advancements in satellite imagery have increased the production of remotely sensed images. Therefore, developing efficient methods for annotating these images has gained popularity. Most of the current state-of-the-art methods are based on supervised machine learning techniques. We propose a method called semisupervised multi-label annotizer (SS-MLA) that adapts vector-quantized temporal associative memory to annotate remotely sensed images. One of the advantages of SS-MLA over the supervised methods is that it extracts features not only from the given sample but also from similar samples that are previously seen without using an explicit attention mechanism. Thus SS-MLA enhances the learning efficiency of the training process. We conduct extensive performance comparisons with five different methods in the literature over four datasets. The comparison results indicate the success of the proposed method over the existing ones: SS-MLA generates the best results in 7 out of 11 comparisons. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE). en_US
dc.identifier.doi 10.1117/1.JRS.15.036509
dc.identifier.issn 1931-3195
dc.identifier.scopus 2-s2.0-85116340141
dc.identifier.uri https://doi.org/10.1117/1.JRS.15.036509
dc.language.iso en en_US
dc.publisher SPIE en_US
dc.relation.ispartof Journal of Applied Remote Sensing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject image classification en_US
dc.subject multi-label en_US
dc.subject remote sensing en_US
dc.subject semisupervised en_US
dc.subject vector-quantized temporal associative memory en_US
dc.title Ss-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Üstünkök, Tolga/0000-0002-0464-8803
gdc.author.institutional Üstünkök, Tolga
gdc.author.institutional Karakaya, Kasım Murat
gdc.author.institutional Üstünkök, Tolga
gdc.author.institutional Karakaya, Kasım Murat
gdc.author.scopusid 57205573451
gdc.author.scopusid 16637174900
gdc.author.wosid KARAKAYA, Murat/A-4952-2013
gdc.author.wosid Üstünkök, Tolga/AAX-8090-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Üstünkök T., Atlllm University, Faculty of Engineering, Department of Software Engineering, Ankara, Turkey; Karakaya M., Atlllm University, Faculty of Engineering, Department of Computer Engineering, Ankara, Turkey en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 15 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3197740616
gdc.identifier.wos WOS:000703527600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6195077E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.829843E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.099
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication 38221a87-3a51-46e8-b959-ff59b4fc86b6
relation.isAuthorOfPublication 93f27ee1-19eb-42dc-b4eb-a3cc7dc4b057
relation.isAuthorOfPublication.latestForDiscovery 38221a87-3a51-46e8-b959-ff59b4fc86b6
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections