Ss-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Images

dc.authoridÜstünkök, Tolga/0000-0002-0464-8803
dc.authorscopusid57205573451
dc.authorscopusid16637174900
dc.authorwosidKARAKAYA, Murat/A-4952-2013
dc.authorwosidÜstünkök, Tolga/AAX-8090-2021
dc.contributor.authorÜstünkök,T.
dc.contributor.authorKarakaya,M.
dc.contributor.otherSoftware Engineering
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:19:50Z
dc.date.available2024-07-05T15:19:50Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempÜstünkök T., Atlllm University, Faculty of Engineering, Department of Software Engineering, Ankara, Turkey; Karakaya M., Atlllm University, Faculty of Engineering, Department of Computer Engineering, Ankara, Turkeyen_US
dc.descriptionÜstünkök, Tolga/0000-0002-0464-8803en_US
dc.description.abstractRecent technological advancements in satellite imagery have increased the production of remotely sensed images. Therefore, developing efficient methods for annotating these images has gained popularity. Most of the current state-of-the-art methods are based on supervised machine learning techniques. We propose a method called semisupervised multi-label annotizer (SS-MLA) that adapts vector-quantized temporal associative memory to annotate remotely sensed images. One of the advantages of SS-MLA over the supervised methods is that it extracts features not only from the given sample but also from similar samples that are previously seen without using an explicit attention mechanism. Thus SS-MLA enhances the learning efficiency of the training process. We conduct extensive performance comparisons with five different methods in the literature over four datasets. The comparison results indicate the success of the proposed method over the existing ones: SS-MLA generates the best results in 7 out of 11 comparisons. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).en_US
dc.identifier.citation0
dc.identifier.doi10.1117/1.JRS.15.036509
dc.identifier.issn1931-3195
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85116340141
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1117/1.JRS.15.036509
dc.identifier.volume15en_US
dc.identifier.wosWOS:000703527600001
dc.identifier.wosqualityQ4
dc.institutionauthorÜstünkök, Tolga
dc.institutionauthorKarakaya, Kasım Murat
dc.institutionauthorÜstünkök, Tolga
dc.institutionauthorKarakaya, Kasım Murat
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.relation.ispartofJournal of Applied Remote Sensingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectimage classificationen_US
dc.subjectmulti-labelen_US
dc.subjectremote sensingen_US
dc.subjectsemisuperviseden_US
dc.subjectvector-quantized temporal associative memoryen_US
dc.titleSs-Mla: a Semisupervised Method for Multi-Label Annotation of Remotely Sensed Imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication38221a87-3a51-46e8-b959-ff59b4fc86b6
relation.isAuthorOfPublication93f27ee1-19eb-42dc-b4eb-a3cc7dc4b057
relation.isAuthorOfPublication.latestForDiscovery38221a87-3a51-46e8-b959-ff59b4fc86b6
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections