5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 4Citation - Scopus: 4Further Development of Polyepichlorohydrin Based Anion Exchange Membranes for Reverse Electrodialysis by Tuning Cast Solution Properties(Mdpi, 2022) Eti, Mine; Cihanoglu, Aydin; Guler, Enver; Gomez-Coma, Lucia; Altiok, Esra; Arda, Muserref; Kabay, NalanRecently, there have been several studies done regarding anion exchange membranes (AEMs) based on polyepichlorohydrin (PECH), an attractive polymer enabling safe membrane fabrication due to its inherent chloromethyl groups. However, there are still undiscovered properties of these membranes emerging from different compositions of cast solutions. Thus, it is vital to explore new membrane properties for sustainable energy generation by reverse electrodialysis (RED). In this study, the cast solution composition was easily tuned by varying the ratio of active polymer (i.e., blend ratio) and quaternary agent (i.e., excess diamine ratio) in the range of 1.07-2.00, and 1.00-4.00, respectively. The membrane synthesized with excess diamine ratio of 4.00 and blend ratio of 1.07 provided the best results in terms of ion exchange capacity, 3.47 mmol/g, with satisfactory conductive properties (area resistance: 2.4 omega center dot cm(2), electrical conductivity: 6.44 mS/cm) and high hydrophilicity. RED tests were performed by AEMs coupled with the commercially available Neosepta CMX cation exchange membrane (CEMs).Review Citation - WoS: 21Citation - Scopus: 35Principles of Reverse Electrodialysis and Development of Integrated-Based System for Power Generation and Water Treatment: a Review(Walter de Gruyter Gmbh, 2022) Othman, Nur Hidayati; Kabay, Nalan; Guler, EnverReverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.Article Citation - WoS: 9Citation - Scopus: 9Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs(Mdpi, 2022) Kaya, Tugce Zeynep; Altiok, Esra; Guler, Enver; Kabay, NalanThis study investigates the influence of co-existing ions on the salinity gradient power generation performance of the reverse electrodialysis (RED) using three different commercial ion exchange membrane pairs. The feed solutions, including the mixture of two different salts, were prepared with 90 wt.% of NaCl and 10 wt.% of LiCl, KCl, CaCl2, MgCl2 or Na2SO4 by keeping the salt ratio between high concentrate solution and low concentrate solution constant as 1:30 (g/g) at various flow velocities (50, 125 and 200 mL/min). It was observed that the divalent ions exhibited a negative impact on the performance of the RED system due to their high valence and low ionic mobility depending on their high hydrated radius and low diffusion coefficients compared to those of the monovalent ions. On the other hand, the effect of the monovalent ions differed according to the properties of ion exchange membranes used in the RED stack. When the power generation performances of ion exchange membrane pairs employed in the RED stack were compared, it was considered that Neosepta AMX and CMX membranes provided the highest power density due to their low membrane thicknesses, low electrical resistances, and relatively high ion exchange capacities compared to other two commercial ion exchange membrane pairs.Article Citation - WoS: 18Citation - Scopus: 20Investigations on the Effects of Operational Parameters in Reverse Electrodialysis System for Salinity Gradient Power Generation Using Central Composite Design (ccd)(Elsevier, 2022) Altiok, Esra; Kaya, Tugce Zeynep; Othman, Nur Hidayati; Kinali, Orhan; Kitada, Soma; Guler, Enver; Kabay, NalanReverse electrodialysis (RED) can be utilized for the production of renewable energy from salinity gradients. However, there are many key parameters that could influence the performance of RED. This study investigates the use RSM for development of a predictive power density (PD) and open-circuit voltage (OCV) model for the RED system. A three-factor central composite design (CCD) was used to quantify the effects of flow velocity (X-1), salinity ratio (X-2), and number of cell pairs (X-3) towards PD and OCV. A total of 17 experimental data were fitted and ANOVA was used to validate the accuracy of the models. 3D and surface plots were created to foresee the optimal levels of each variable. It was found that flow velocity and salinity ratio have the most dominant influences on the RED performances as compared to number of cell pairs. The predicted PD and OCV values were found to be reasonably fit with the experimental data, validating the predictability of applied models. Therefore, this study suggests that CCD can be considered an effective tool for evaluating and optimizing the RED system using a minimum number of experiments.Article Citation - WoS: 19Citation - Scopus: 22Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair With Homogeneous Bulk Structure(Mdpi, 2021) Altiok, Esra; Kaya, Tugce Zeynep; Guler, Enver; Kabay, Nalan; Bryjak, MarekSalinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 mu m of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m(2).

