2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 10Citation - Scopus: 13Electromagnetic Launching Systems To Geosynchronously Equatorial Orbit in Space and Cost Calculations(Ieee-inst Electrical Electronics Engineers inc, 2017) Inger, Erk; Inger, ErkElectromagnetic launching mass driver system (projectile) has been examined and evaluated as an eligible alternative to the chemical propulsion systems, in space transportation. The projectile has been arranged to reach to its orbital speed at delivered altitude, with an energy transferred externally to a projectile all the flyway through the electromagnetic launcher. The multistage electromagnetic launcher structure contains the capacitors for storing energy and transfers this energy through a switching inductor to a mass driver. The mass driver is synchronously being energized by a voltage through an oscillating coil-capacitor circuit. This paper presents dependence and optimization of design and performance parameters of coilgun equations. Cost estimations of electromagnetic launching system are also calculated in energy per unit mass.Article Citation - WoS: 4Citation - Scopus: 3Crosslinked Polyethyleneimine-Based Structures in Different Morphologies as Promising Co2 Adsorption Systems: a Comprehensive Study(Wiley, 2024) Demirci, Sahin; Inger, Erk; Bhethanabotla, Venkat; Sahiner, NurettinAlthough there are many studies on CO2 adsorption via PEI-modified carbon particles, metal-organic frameworks, zeolitic imidazolate frameworks, and silica-based porous structures, only a limited number of studies on solely cross-linked PEI-based structures. Here, the CO2 adsorption capacities of PEI-based microgels and cryogels were investigated. The effects of various parameters influencing the CO2 adsorption capacity of PEI-based structures, for example, crosslinker types, PEI types (branched [bPEI] or linear [lPEI]), adsorbent types (microgel or cryogel), chemical-modification including their complexes were examined. NaOH-treated glycerol diglycidyl ether (GDE) crosslinked lPEI microgels exhibited higher CO2 adsorption capacity among other microgels with 0.094 +/- 0.006 mmol CO2/g at 900 mm Hg, 25 degrees C with 2- and 7.5-fold increase upon pentaethylenehexamine (PEHA) modification and Ba(II) metal ion complexing, respectively. The CO2 adsorption capacity of bPEI and lPEI-based cryogels were compared and found that lPEI-GDE cryogels had higher adsorption capacity than bPEI-GDE cryogels with 0.188 +/- 0.01 mmol CO2/g at 900 mm Hg and 25 degrees C. The reuse studies revealed that NaOH-treated GDE crosslinked bPEI and lPEI microgels and cryogels showed promising potential, for example, after 10-times repeated use >50% CO2 adsorption capacity was retained. The results affirmed that PEI-based microgels and cryogels are encouraging materials for CO2 capture and reuse applications.

