4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 2Citation - Scopus: 2Trap Distribution in Agin5s8< Single Crystals: Thermoluminescence Study(Pergamon-elsevier Science Ltd, 2018) Delice, S.; Işık, Mehmet; Isik, M.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringDistribution of shallow trap levels in AgIn5S8 crystals has been investigated by thermoluminescence (TL) measurements performed below room temperature (10-300 K). One broad TL peak centered at 33 K was observed as constant heating rate of 0.2 K/s was employed for measurement. The peak shape analysis showed that the TL curve could consist of several individual overlapping TL peaks or existence of quasi-continuous distributed traps. Therefore, TL experiments were repeated for different stopping temperatures (T-stop) between 10 and 34 K with constant heating rate of 0.2 K/s to separate the overlapping TL peaks. The E-t vs T-stop indicated that crystal has quasi-continuously distributed traps having activation energies increasing from 13 to 41 meV. Heating rate effect on trapped charge carriers was also investigated by carrying out the TL. experiments with various heating rates between 0.2 and 0.6 K/s for better comprehension of characteristics of existed trap levels. Analyses indicated that the trap levels exhibited the properties of anomalous heating rate behavior which means the TL intensity and area under the TL peak increase with increasing heating rate.Article Citation - WoS: 9Citation - Scopus: 9Thermally Stimulated Current Measurements in Undoped Ga3inse4< Single Crystals(Pergamon-elsevier Science Ltd, 2011) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThe trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0 x 10(-25) cm(2) with concentration of 1.4 x 10(17) cm(-3). (C) 2011 Elsevier Ltd. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Structural and Optical Properties of Thermally Evaporated (gase)0.75-(gas)0.25 Thin Films(Elsevier Gmbh, 2021) Isik, M.; Işık, Mehmet; Emir, C.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringGaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD pattern and EDS analyses indicated that thin films annealed at 300 ?C were successfully deposited and its structural characteristics are well-consistent with its single crystal form. Surface morphology was studied by means of SEM and AFM measurements. Optical properties were investigated by transmission and Raman spectroscopy techniques. Raman spectrum exhibited three peaks around 172, 242 and 342 cm-1. Analyses of transmission spectrum revealed the direct band gap energy as 2.34 eV. The mixed compounds of GaSe0.75S0.25 were prepared for the first time in a thin film form and the results of the present paper would provide valuable information to research area in which layered compounds have been studied in detail.Article Citation - WoS: 12Citation - Scopus: 12First Principles Study of Bi12geo20< Electronic, Optical and Thermodynamic Characterizations(Elsevier, 2021) Isik, M.; Işık, Mehmet; Surucu, G.; Gencer, A.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringBismuth germanium oxide (Bi12GeO20) is one of the attractive members of sillenite compounds having fascinating photorefractive characteristics. The electronic, optical and thermodynamic properties of Bi12GeO20 were investigated using density functional theory (DFT) calculations. The experimental and calculated X-ray diffraction patterns were obtained as well-consistent with each other. The lattice constant of the cubic crystalline structure of Bi12GeO20 compound was calculated as 10.304 angstrom. The electronic band structure and partial density of states plots were reported and contribution of constituent atoms (Bi12GeO20) to the valence and conduction bands was presented. The band gap energy of the Bi12GeO20 was calculated as 3.20 eV. This wide direct band gap energy provides Bi12GeO20 significant potential in ultraviolet applications. The spectra of real and imaginary components of dielectric function, refractive index, extinction coefficient and absorption coefficient were drawn in the 0-10 eV energy range. Temperature-dependent heat capacity plot indicated the Dulong-Petit limit as 825 J/mol.K. The results of the present study would present worthwhile information to device application areas of Bi12GeO20 compound.

