5 results
Search Results
Now showing 1 - 5 of 5
Conference Object Citation - WoS: 10Citation - Scopus: 10Investigation of Carrier Transport Mechanisms in the Cu-Zn Based Hetero-Structure Grown by Sputtering Technique(Canadian Science Publishing, 2018) Gullu, H. H.; Terlemezoglu, M.; Bayrakli, O.; Yildiz, D. E.; Parlak, M.In this paper, we present results of the electrical characterization of n-Si/p-Cu-Zn-Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current-voltage measurements in the temperature range of 220-360 K, room temperature, and frequency-dependent capacitance-voltage and conductance-voltage measurements. The anomaly in current-voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm(-2)K(-2) by means of modified Richardson plot.Article Citation - WoS: 6Citation - Scopus: 7Construction of Self-Assembled Vertical Nanoflakes on Cztsse Thin Films(Iop Publishing Ltd, 2019) Terlemezoglu, M.; Surucu, O. Bayrakli; Colakoglu, T.; Abak, M. K.; Gullu, H. H.; Ercelebi, C.; Parlak, M.Cu2ZnSn(S, Se)(4) (CZTSSe) is a promising alternative absorber material to achieve high power conversion efficiencies, besides its property of involving low-cost and earth-abundant elements when compared to Cu(In, Ga) Se-2 (CIGS) and cadmium telluride (CdTe), to be used in solar cell technology. In this study, a novel fabrication technique was developed by utilizing RF sputtering deposition of CZTSSe thin films having a surface decorated with self-assembled nanoflakes. The formation of nanoflakes was investigated by detailed spectroscopic method of analysis in the effect of each stacked layer deposition in an optimized sequence and the size of nanoflakes by an accurate control of sputtering process including film thickness. Moreover, the effects of substrate temperature on the formation of nanoflakes on the film surface were discussed at a fixed deposition route. One of the main advantages arising from the film surface with self-assembled nanoflakes is the efficient light trapping which decreases the surface reflectance. As a result of the detailed production and characterization studies, it was observed that there was a possibility of repeatable and controllable fabrication sequence for the preparation of CZTSSe thin films with self-textured surfaces yielding low surface reflectance.Article Citation - WoS: 14Citation - Scopus: 14Temperature Dependence of Electrical Properties in In/Cu2< Diodes(indian Acad Sciences, 2019) Gullu, H. H.; Yildiz, D. E.; Surucu, O. Bayrakli; Terlemezoglu, M.; Parlak, M.Cu2ZnSnTe4 (CZTTe) thin films with In metal contact were deposited by thermal evaporation on monocrystalline n-type Si wafers with Ag ohmic contact to investigate the device characteristics of an In/CZTTe/Si/Ag diode. The variation in electrical characteristics of the diode was analysed by carrying out current-voltage (I-V) measurements in the temperature range of 220-360 K. The forward bias I-V behaviour was modelled according to the thermionic emission (TE) theory to obtain main diode parameters. In addition, the experimental data were detailed by taking into account the presence of an interfacial layer and possible dominant current transport mechanisms were studied under analysis of ideality factor, n. Strong effects of temperature were observed on zero-bias barrier height (Phi(B0)) and n values due to barrier height inhomogeneity at the interface. The anomaly observed in the analysis of TE was modelled by Gaussian distribution (GD) of barrier heights with 0.844 eV mean barrier height and 0.132 V standard deviation. According to the Tung's theoretical approach, a linear correlation between Phi(B0) and n cannot be satisfied, and thus the modified Richardson plot was used to determine Richardson constant (A*). As a result, A* was calculated approximately as 120.6 A cm(-2) K-2 very close to the theoretical value for n-Si. In addition, the effects of series resistance (R-s) by estimating from Cheng's function and density of surface states (N-ss) by taking the bias dependence of effective barrier height, were discussed.Conference Object Citation - WoS: 4Citation - Scopus: 3Temperature-dependent material characterization of CuZnSe2 thin films(Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.Article Citation - WoS: 8Citation - Scopus: 9Investigation of Electrical Properties of In/Znin2< Diode(indian Acad Sciences, 2019) Gullu, H. H.In/ZnIn2Te4/n-Si/Ag diode structure was fabricated by the thermal deposition of a ZnIn2Te4 thin film on n-Si wafer substrate with Ag metal back contact. The structural characteristics of the film were investigated in terms of composition, X-ray diffraction and topographic measurements. The diode structure was completed by evaporating In metal on the film surface as a top contact. The diode parameters as saturation current, barrier height, ideality factor and series resistance values were determined from the semi-logarithmic forward bias current-voltage characteristics of the diode. According to the assumption of the thermionic emission model, the ideality factor was found higher than unity and it was also observed that the barrier height and ideality factor showed a temperature-dependent profile resulting from the non-ideality in the current-voltage behaviour of the diode. As a result, the model was modified by considering inhomogeneous barrier formation and Gaussian distribution was expected to be dominant on 1.37 eV mean barrier height with a deviation of 0.18. In addition, the voltage dependence of these Gaussian diode parameters was investigated. The forward and reverse bias capacitance and conductance measurements showed that there was a slight change in capacitance values with frequency whereas the conductance values decreased with increase in frequency. In addition to the current-voltage analysis, the distribution of density of interface states and the values of series resistance were evaluated as a function of bias voltage and frequency.

