2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 14Citation - Scopus: 15Structural and Optical Properties of Ga2se3< Crystals by Spectroscopic Ellipsometry(Springer, 2019) Guler, I.; Isik, M.; Gasanly, N. M.; Gasanova, L. G.; Babayeva, R. F.Optical and crystalline structure properties of Ga2Se3 crystals were analyzed utilizing ellipsometry and x-ray diffraction (XRD) experiments, respectively. Components of the complex dielectric function (epsilon=epsilon(1)+i epsilon(2)) and refractive index (N=n+ik) of Ga2Se3 crystals were spectrally plotted from ellipsometric measurements conducted from 1.2eV to 6.2eV at 300K. From the analyses of second-energy derivatives of epsilon(1) and epsilon(2), interband transition energies (critical points) were determined. Absorption coefficient-photon energy dependency allowed us to achieve a band gap energy of 2.02eV. Wemple and DiDomenico single effective oscillator and Spitzer-Fan models were accomplished and various optical parameters of the crystal were reported in the present work.Article Citation - WoS: 4Citation - Scopus: 4Growth and Characterization of Nabi(mo0.5w0.5< Single Crystal: a Promising Material for Optoelectronic Applications(Elsevier Sci Ltd, 2023) Isik, M.; Guler, I.; Gasanly, N. M.The structural and optical characteristics of NaBi(Mo0.5W0.5O4)2 single crystals grown by Czochralski method were investigated. X-ray diffraction (XRD) pattern exhibited four well-defined peaks related to tetragonal crystalline structure with a space group I41/a. Raman and infrared transmittance spectra were recorded to investigate vibrational properties of the compound. Room temperature transmission spectrum was measured to reveal band gap energy of the crystal. The derivative spectral and absorption coefficient analyses resulted in direct band gap energy of 3.19 and 3.18 eV, respectively. Urbach energy of the crystal was also determined as 0.17 eV from photon energy dependency of absorption coefficient. The structural and optical parameters ob-tained for NaBi(Mo0.5W0.5O4)2 were compared with the parameters of the NaBi(XO4)2 (X: Mo,W) compounds to understand the effect of the composition on the studied properties. The reported characteristics of NaBi (Mo0.5W0.5O4)2 point out that the compound has significant potential to be used in optoelectronic devices.

