Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Synthesis of Silver Nanoparticle-Immobilized Antibacterial Anion-Exchange Membranes for Salinity Gradient Energy Production by Reverse Electrodialysis
    (Amer Chemical Soc, 2024) Eti, Mine; Cihanoglu, Aydin; Hamaloglu, Kadriye Ozlem; Altiok, Esra; Guler, Enver; Tuncel, Ali; Kabay, Nalan
    Biofouling, stemming from the attachment of living microorganisms, such as bacteria, which form resilient biofilms on membrane surfaces, presents a significant challenge that hampers the efficiency of anion-exchange membranes (AEMs) in reverse electrodialysis (RED) applications. This limitation curtails the generation of electrical power from salinity gradients, which notably is a sustainable form of energy known as osmotic energy. RED stands as a clean and promising process to harness this renewable energy source. This study aimed to impart antibacterial activity to synthesized AEMs by using silver nanoparticles (AgNPs). For that purpose, AgNPs were synthesized at 30 degree celsius using two different pH values (6.0 and 9.0) and immobilized into synthesized AEMs using the dip-coating technique. In nanoparticle synthesis, ascorbic acid and trisodium citrate were used as a reductant and a stabilizer, respectively, to take control of the particle size and agglomeration behavior. The results indicated that AgNPs synthesized at pH 6.0 were dispersed on the AEM surface without agglomeration. The stability of AgNPs immobilized on the membrane surface was tested under low- and high-saline solutions. The antibacterial activities of AEMs were determined with the colony-counting method using Gram-negative (Escherichia coli) bacterial suspension. The viability of bacteria dramatically decreased after the immobilization of AgNPs in the AEMs. In the short- and long-term RED tests, it has been observed that the AEMs having AgNPs have high energy-generating potentials, and power density up to 0.372 W/m(2) can be obtained.
  • Article
    Citation - WoS: 15
    Metal-Salt Enhanced Grafting of Vinylpyridine and Vinylimidazole Monomer Combinations in Radiation Grafted Membranes for High-Temperature PEM Fuel Cells
    (Amer Chemical Soc, 2020) Mojarrad, Naeimeh Rajabalizadeh; Sadeghi, Sahl; Kaplan, Begum Yarar; Guler, Enver; Gursel, Selmiye Alkan
    Proton exchange membranes were prepared and characterized for utilization in high-temperature proton exchange membrane fuel cells, HT-PEMFCs. 1-vinylimidazole (1-VIm) and 4-vinylpyridine (4VP) monomers were simultaneously grafted onto pre-irradiated ETFE (ethylene-co-tetrafluoroethylene) films which were prepared using gamma-rays with a dose of 100 kGy, as a robust substrate to prepare acid-base composite membranes. The grafting reaction was performed at 60 degrees C for 24 h followed by protonation via phosphoric acid doping in the subsequent step. The effect of adding ferrous salts as promoters in grafting was investigated by characterization of resultant membranes via thermal gravimetric analysis and mechanical tests. The fuel cell tests were conducted under different relative humidities (RHs) and applied temperatures. Membranes prepared with salt addition exhibited superior proton conductivities. Results including up to 80 mS cm(-1) conductivity at 110 degrees C in 60% RH and excellent thermal stability, even at 300 degrees C, suggest these membranes are promising for HT-PEMFC applications.