Search Results

Now showing 1 - 3 of 3
  • Conference Object
    Citation - WoS: 1
    Citation - Scopus: 2
    An on Demand Virtual CPU Arhitecture based on Cloud Infrastructure
    (Scitepress, 2017) Gokcay, Erhan
    Cloud technology provides different computational models like, including but not limited to, infrastructure, platform and software as a service. The motivation of a cloud system is based on sharing resources in an optimal and cost effective way by creating virtualized resources that can be distributed easily but the distribution is not necessarily parallel. Another disadvantage is that small computational units like smart devices and less powerful computers, are excluded from resource sharing. Also different systems may have interoperability problems, since the operating system and CPU design differs from each other. In this paper, an on demand dynamically created computational architecture, inspired from the CPU design and called Cloud CPU, is described that can use any type of resource including all smart devices. The computational and data transfer requirements from each unit are minimized. Because of this, the service can be created on demand, each time with a different functionality. The distribution of the calculation over not-so-fast internet connections is compensated by a massively parallel operation. The minimized computational requirements will also reduce the interoperability problems and it will increase fault tolerance because of increased number of units in the system.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    A New Multi-Target Compiler Architecture for Edge-Devices and Cloud Management
    (Gazi Univ, 2022) Gokcay, Erhan
    Edge computing is the concept where the computation is handled at edge-devices. The transfer of the computation from servers to edge-devices will decrease the massive amount of data transfer generated by edge-devices. There are several efficient management tools for setup and connection purposes, but these management tools cannot provide a unified programming system from a single source code/project. Even though it is possible to control each device efficiently, a global view of the computation is missing in a programming project that includes several edge-devices for computation and data analysis purposes, and the devices need to be programmed individually. A generic workflow engine might automate part of the problem using standard interfaces and predefined objects miming on edge-devices. Nevertheless, the approach fails in fine-tuning each edge-device since the computation cannot be moved easily among devices. This paper introduces a new compiler architecture to control and program edge-devices from a single source code. The source code can be distributed to multiple edge-devices using simple compiler directives, and the transfer and communication of the source code with multiple devices are handled transparently. Fine-tuning the source code and code movement between devices becomes very efficient in editing and time. The proposed architecture is a lightweight system with fine-tuned computation and distribution among devices.
  • Conference Object
    Citation - Scopus: 2
    A Stream Clustering Algorithm Using Information Theoretic Clustering Evaluation Function
    (Scitepress, 2018) Gokcay, Erhan
    There are many stream clustering algorithms that can be divided roughly into density based algorithms and hyper spherical distance based algorithms. Only density based algorithms can detect nonlinear clusters and all algorithms assume that the data stream is an ordered sequence of points. Many algorithms need to receive data in buckets to start processing with online and offline iterations with several passes over the data. In this paper we propose a streaming clustering algorithm using a distance function which can separate highly nonlinear clusters in one pass. The distance function used is based on information theoretic measures and it is called Clustering Evaluation Function. The algorithm can handle data one point at a time and find the correct number of clusters even with highly nonlinear clusters. The data points can arrive in any random order and the number of clusters does not need to be specified. Each point is compared against already discovered clusters and each time clusters are joined or divided using an iteratively updated threshold.