Search Results

Now showing 1 - 10 of 20
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Low-Temperature Thermoluminescence in Layered Structured Ga0.75in0.25< Single Crystals
    (Elsevier Science Sa, 2012) Isik, M.; Bulur, E.; Gasanly, N. M.
    Defect centers in Ga0.75In0.25Se single crystals have been studied performing the thermoluminescence measurements in the temperature range of 10-300 K. The observed glow curves were analyzed using curve fitting, initial rise, and different heating rate methods to determine the activation energies of the defect centers. Thermal cleaning process has been applied to decompose the overlapped curves. Four defect centers with activation energies of 9, 45,54 and 60 meV have been found as a result of the analysis. The capture cross sections and attempt-to-escape frequencies of the defect centers were also found using the curve fitting method under the light of theoretical predictions. The first order kinetics for the observed glow curve was revealed from the consistency between the theoretical predictions for slow retrapping and experimental results. Another indication of negligible retrapping was the independency of peak position from concentration of carriers trapped in defect levels. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    Low Temperature Thermoluminescence Behaviour of Y2o3< Nanoparticles
    (Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.
    Y2O3 nanoparticles were investigated using low temperature thermoluminescence (TL) experiments. TL glow curve recorded at constant heating rate of 0.4 K/s exhibits seven peaks around 19, 62, 91, 115, 162, 196 and 215 K. Activation energies and characteristics of traps responsible for observed curves were revealed under the light of results of initial rise analyses and T-max-T-stop experimental methods. Analyses of TL curves obtained at different stopping temperatures resulted in presence of one quasi-continuously distributed trap with activation energies increasing from 18 to 24 meV and six single trapping centers at 49, 117, 315, 409, 651 and 740 meV. Activation energies of all revealed centers were reported in the present paper. Structural characterization of Y2O3 nanoparticles was accomplished using X-ray diffraction and scanning electron microscopy measurements. (C) 2019 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Identification of Shallow Trap Centers in Inse Single Crystals and Investigation of Their Distribution: a Thermally Stimulated Current Spectroscopy
    (Elsevier, 2024) Isik, M.; Gasanly, N. M.
    Identification of trap centers in semiconductors takes great importance for improving the performance of electronic and optoelectronic devices. In the present study, we employed the thermally stimulated current (TSC) method within a temperature range of 10-280 K to explore trap centers in InSe crystal-a material with promising applications in next-generation devices. Our findings revealed the existence of two distinct hole trap centers within the InSe crystal lattice located at 0.06 and 0.14 eV. Through the leveraging the T-stop method, we offered trap distribution parameters of revealed centers. The results obtained from the experimental methodology employed to investigate the distribution of trap centers indicated that one of the peaks extended between 0.06 and 0.13 eV, while the other spanned from 0.14 to 0.31 eV. Notably, our research uncovers a remarkable variation in trap density, spanning one order of magnitude, for every 10 and 88 meV of energy variation. The results of our research present the characteristics of shallow trap centers in InSe, providing important information for the design and optimization of InSe-based optoelectronic devices.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Thermoluminescence Properties of Al Doped Zno Nanoparticles
    (Elsevier Sci Ltd, 2018) Isik, M.; Gasanly, N. M.
    ZnO nanoparticles doped with aluminum (AZO nanoparticles) were investigated using low temperature thermoluminescence (TL) and structural characterization experiments. TL experiments were performed on AZO nanoparticles in the temperature range of 10-300 K. TL curve presented one intensive peak around 123 K and two overlapped peaks to intensive peak around 85 and 150 K for heating rate of 0.1 K/s. Curve fitting and initial rise methods were used to find the activation energies of associated trapping centers. Analyses resulted in the presence of three centers at 0.05, 0.08 and 0.17 eV with peak maximum temperatures (T-m) of 86.2, 121.5 and 147.1 K, respectively. TL experiments were expanded using different heating rates between 0.1 K/s and 0.5 K/s. Behavior of revealed traps was investigated using an experimental technique called as T-m - T-stop method. It was seen that traps are quasi-continuously distributed within the band gap. Structural properties were studied using x-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy experiments.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Thermoluminescence Properties of Zno Nanoparticles in the Temperature Range 10-300 K
    (Springer, 2016) Isik, M.; Yildirim, T.; Gasanly, N. M.
    Low-temperature thermoluminescence (TL) properties of ZnO nanoparticles grown by sol-gel method were investigated in the 10-300 K temperature range. TL glow curve obtained at 0.2 K/s constant heating rate exhibited one broad peak around 83 K. The observed peak was analyzed using curve fitting method to determine the activation energies of trapping center(s) responsible for glow curve. Analyses resulted in the presence of three peaks at 55, 85 and 118 K temperatures with activation energies of 12, 30 and 45 meV, respectively. Thermal cleaning process was applied to separate overlapped peaks and get an opportunity to increase the reliability of results obtained from curve fitting method. Heating rate dependence of glow curve was also studied for rates between 0.2 and 0.7 K/s. The shift of the peak maximum temperatures to higher values and decrease in peak height with heating rate were observed. Moreover, X-ray diffraction and scanning electron microscopy were used for structural characterization.
  • Article
    Low Temperature Thermoluminescence of Quaternary Thallium Sulfide Tl4inga3<
    (indian Assoc Cultivation Science, 2015) Delice, S.; Isik, M.; Bulur, E.; Gasanly, N. M.
    Thermoluminescence measurements have been carried out on Tl4InGa3S8 single crystals in the temperature range of 10-300 K at various heating rates. The observed thermoluminescence spectra have been analyzed applying many methods like curve fitting, initial rise, peak shape and heating rate methods. Thermal cleaning method has been performed on the observed thermoluminescence glow curve to separate the overlapped peaks. Three distinctive trapping centers with activation energies of 13, 44 and 208 meV have been revealed from the results of the analysis. Heating rate dependence and traps distribution investigations have been also undertaken on the most intensive peak. The thermoluminescence mechanisms in the observed traps have been attributed to first order kinetics (slow retrapping) on the strength of the consistency between theoretical assumptions for slow retrapping process and experimental outcomes.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals
    (Elsevier, 2022) Isik, M.; Sarigul, N.; Gasanly, N. M.
    GaSe and Ga2Se3 are semiconducting compounds formed from same constituent elements. These compounds have been attractive due to their optoelectronic and photovoltaic applications. Defects take remarkable attention since they affect quality of semiconductor devices. In the present paper, deep defect centers in GaSe and Ga2Se3 single crystals grown by Bridgman method were reported from the analyses of thermoluminescence measurements performed in the 350-675 K range. Experimental TL curves of GaSe and Ga2Se3 single crystals presented one and two overlapped peaks, respectively. The applied curve fitting and initial rise techniques were in good agreement about trap activation energies of 0.83 eV for GaSe, 0.96 and 1.24 eV for Ga2Se3 crystals. Crystalline structural properties of the grown single crystals were also investigated by x-ray diffraction measurements. The peaks observed in XRD patterns of the GaSe and Ga2Se3 crystals were well-consistent with hexagonal and zinc blende structures, respectively.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Thermoluminescence Properties and Trapping Parameters of Tlgas2 Single Crystals
    (Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.
    TlGaS2 layered single crystals have been an attractive research interest due to their convertible characteristics into 2D structure. In the present paper, structural, optical and thermoluminescence properties of TlGaS2 single crystals were investigated. XRD pattern of the crystal presented five well-defined peaks associated with monoclinic unit cell. Band gap and Urbach energies were found to be 2.57 and 0.25 eV, respectively, from the analyses of transmittance spectrum. Thermoluminescence measurements were carried out above room temperature up to 660 K at various heating rates. One TL peak with peak maximum temperature of 573 K was obtained in the TL spectrum at 1.0 K/s. Curve fitting, initial rise and variable heating rate methods were used for analyses. All of those resulted in presence of a deep trapping level with activation energy around 0.92 eV. Heating rate dependence of the TL peak was also studied and it was indicated that peak maximum temperature shifted to higher temperatures besides decreasing TL intensity as the higher heating rates were employed.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Thermoluminescence Study in Cu3ga5< Single Crystals: Application of Heating Rate and tm< Methods
    (Elsevier Science Bv, 2018) Isik, M.; Gasanly, N. M.; Gasanova, L. G.; Mahammadov, A. Z.
    Cu3Ga5S9 semiconducting single crystals were investigated using thermoluminescence (TL) measurements in 10-300 K temperature region. In the TL glow curve, one peak starting to appear at the instant temperature is increased from 10 K and another peak, which is broader than a general individual TL peak, were observed. The broad peak around 66 K was investigated using T-m-T-stop experimental method to understand whether or not this peak is composed of more than one individual peaks or continuously distributed traps. Curve fitting, initial rise and peak shape methods were used for acceptable TL curves to be analyzed. TL curves in T-m-T-stop method indicated that observed peaks are due to the existence of quasi-continuous distribution of traps. Structural characterizations of Cu3Ga5S9 single crystals were studied using x-ray diffraction and energy dispersive spectroscopy measurements. The crystal structure, lattice parameters and atomic composition of the elements were reported in the present paper.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    The Defect State of Yb-Doped Zno Nanoparticles Using Thermoluminescence Study
    (Elsevier Sci Ltd, 2019) Isik, M.; Gasanly, N. M.
    Shallow trapping centers in Yb-doped ZnO nanoparticles were determined using thermoluminescence (TL) measurements applied in the 10-300 K temperature region. Undoped and Yb-doped ZnO nanoparticles were synthesized by sol-gel method. TL glow curve of undoped nano-particles presented three peaks around 56, 108 and 150 K whereas one additional peak around 83 K was observed in the TL curve of Yb-doped ZnO nano-particles. The increase of Yb concentration in the nanoparticles increased the TL intensity of this additional peak. Activation energies of interstitial defect centers were found as 20, 82 and 105 meV while energy of trapping center existing due to Yb-doping was obtained as 72 meV using curve fitting and initial rise methods.