5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 17Citation - Scopus: 16A Study on Reliability of Coherent Systems Equipped With a Cold Standby Component(Springer Heidelberg, 2014) Eryilmaz, SerkanIn this paper, we investigate the effect of a single cold standby component on the performance of a coherent system. In particular, we focus on coherent systems which may fail at the time of the first component failure in the system. We obtain signature based expressions for the survival function and mean time to failure of the coherent systems satisfying the abovementioned property.Article Citation - WoS: 5Citation - Scopus: 5Some Reliability Measures and Maintenance Policies for a Coherent System Composed of Different Types of Components(Springer Heidelberg, 2023) Kelkinnama, Maryam; Eryilmaz, SerkanConsider an n-components coherent system monitored at one or two inspection times, and some information about the system and its components is obtained. Under these conditions, some variants of mean residual lifetimes can be defined. Also, the dual concept of the residual lifetime, i.e., inactivity time is defined for a failed system under different conditions. This article is concerned with the study of mean residual lives and mean inactivity times for a coherent system made of multiple types of dependent components. The dependency structure is modeled by a survival copula. The notion of survival signature is employed to represent the system's reliability function and subsequently its mean residual lives and mean inactivity times under different events at the monitoring time. These dynamic measures are used frequently to study the reliability characteristics of a system. Also, they provide helpful tools for designing the optimal maintenance policies to preserving the system from sudden and costly failures. Here, we extend some maintenance strategies for a coherent system consists of multiple dependent components. Some illustrative examples are provided.Article Citation - WoS: 18Citation - Scopus: 21Failure Rates of Consecutive k-out-of-n< Systems(Springer Heidelberg, 2012) Eryilmaz, Serkan; Navarro, JorgeLinear and circular consecutive k-out-of-n systems are very popular models in reliability theory, survival analysis, and biological disciplines and other related lifetime sciences. In these theories, the failure rate function is a key notion for measuring the ageing process. In this paper we obtain some mixture representations for consecutive systems and we apply a mixture-based failure rate analysis for both linear and circular consecutive systems. In particular, we analyze the limiting behavior of the system failure rate when the time increases and we obtain some ordering properties. We first consider the popular case of systems with components having independent and identically distributed lifetimes. In practice, these assumptions may fail. So we also study the case of independent non-identically distributed component lifetimes. This case has special interest when a cold-standby redundancy is used for some components. In this sense, we analyze where to place the best components in the systems. Even more, we also study systems with dependent components by assuming that their lifetimes are exchangeable. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 8Generalized Waiting Time Distributions Associated With Runs(Springer Heidelberg, 2016) Eryilmaz, SerkanLet be a {X-t, t >= 1} sequence of random variables with two possible values as either "1" (success) or "0" (failure). Define an independent sequence of random variables {D-i, i >= 1}. The random variable is associated with the success when it occupies the ith place in a run of successes. We define the weight of a success run as the sum of the D values corresponding to the successes in the run. Define the following two random variables: is the number of trials until the weight of a single success run exceeds or equals k, and is the number of trials until the weight of each of r success runs equals or exceeds k in {X-t, t >= 1}. Distributional properties of the waiting time random variables and are studied and illustrative examples are presented.Article Citation - WoS: 9Citation - Scopus: 13The Concept of Weak Exchangeability and Its Applications(Springer Heidelberg, 2017) Eryilmaz, SerkanA finite sequence of binary random variables is called a weak exchangeable sequence of order m if the sequence consists of m random vectors such that the elements within each random vector are exchangeable in the usual sense and the different random vectors are dependent. The exact and asymptotic joint distributions of the m-dimensional random vector whose elements include the number of successes in each exchangeable sequence are derived. Potential applications of the concept of weak exchangeability are discussed with illustrative examples.

