Failure Rates of Consecutive <i>k</I>-out-of-<i>n< Systems

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

Linear and circular consecutive k-out-of-n systems are very popular models in reliability theory, survival analysis, and biological disciplines and other related lifetime sciences. In these theories, the failure rate function is a key notion for measuring the ageing process. In this paper we obtain some mixture representations for consecutive systems and we apply a mixture-based failure rate analysis for both linear and circular consecutive systems. In particular, we analyze the limiting behavior of the system failure rate when the time increases and we obtain some ordering properties. We first consider the popular case of systems with components having independent and identically distributed lifetimes. In practice, these assumptions may fail. So we also study the case of independent non-identically distributed component lifetimes. This case has special interest when a cold-standby redundancy is used for some components. In this sense, we analyze where to place the best components in the systems. Even more, we also study systems with dependent components by assuming that their lifetimes are exchangeable. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

Description

Navarro, Jorge/0000-0003-2822-915X; Navarro, Jorge/0000-0003-2822-915X; Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Consecutive k-out-of-n system, Failure rate, Signature, Mixtures

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Q3

Source

Volume

41

Issue

1

Start Page

1

End Page

11

Collections